Complex & Imaginary Numbers

Imaginary numbers

Simplifying negative surds

V=2 =v—-1x2

V2i

Complex numbers
C={a+bi:abeR}

General form: z = a + bt
Re(z) =a, Im(z)=0

Addition

If 2y = a + bi and 2y = ¢ + di, then
z1+2o=(a+c)+ (b+d)i

Subtraction

If 2y = a+bi and 2y = ¢ + di, then
21— 29 =(a—c)+ (b—d)i

Multiplication by a real constant

If z=a+bi and k € R, then

kz = ka + kbt
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For i", find remainder  when n +— 4. Then "™ =¢".

Multiplying complex expressions

If 2, = a+ bi and 2y = ¢ + di, then

21 X 2o = (ac — bd) + (ad + be)i

Conjugates

If z = a + bi, conjugate is

Z=a—0bi

Properties

c ntn=2t2%
* N2 =210 2%
e kz=kz, for keR

o 2z == (a+bi)(a—0bi)=a*+b*=|z)?
o z+Z=2Re(z)
Modulus
Distance from origin.
|z = Va2 + b w2z =22

Properties

22

o |z + 2| <z + |2

Multiplicative inverse

1
1=z
z
_a—bi
- a2 + B2
o z
R

Dividing complex numbers

21 1 %179

= 5 multiplicative inverse
z
|22

— =z 22_ =
22

(using multiplicative inverse)

In practice, rationalise denominator: 2t =

29 c2+d?

(a+bi)(c—di)



Argand planes

o Geometric representation of C

o horizontal = Re(z); vertical = Im(z)

e Multiplication by ¢ results in an anticlockwise rota-
tion of §

Solving complex polynomials

Include + for all solutions, including imaginary

Solving complex quadratics

To solve z? + a? = 0 (sum of two squares):

22+ a% = 2% — (ai)? = (2 + ai)(z — ai)

Dividing complex polynomials

Dividing P(z) by D(z) gives quotient Q(z) and remainder
R(z) such that:

P(2) = D(2)Q(2) + R(2)

Remainder theorem

Let o € C. Remainder of P(z) + (z — «) is P(«)

Conjugate root theorem

If a +bi is a solution to P(z) = 0, with a,b € R, then the
conjugate Z = a — bt is also a solution.

Polar form

z=rcisf
= r(cosf + isin0)
=a+bi

o 7 =|z| = y/Re(2)? + Im(z)?

o O =arg(z) (on CAS: arg(a+bi))

« principal argument is Arg(z) € (—m, 7] (note cap-
ital Arg)

Note each complex number has multiple polar represen-
tations: z = rcisf = rcis(6 + 2n7w) where n is integer
number of revolutions

Conjugate in polar form
(rcis@)~! = rcis(—0)

Reflection of z across horizontal axis.

Multiplication and division in polar form

2129 = 1175 Cis(0; 4+ 0y) (multiply moduli, add angles)

% = % cis(f; — 0y) (divide moduli, subtract angles)

de Moivres’ Theorem

(rcis@)™ = r" cis(nf) where n € Z

Roots of complex numbers

nth roots of z = rcis@ are

0 + 2km

z=rw cis(

)

Same modulus for all solutions. Arguments are separated
by 2

n

The solutions of 2™ = a where a € C lie on circle
1
2? +y* = (la|»)?

Sketching complex graphs

o Straight line: Re(z) = ¢ or Im(z) = ¢ (perpendic-
ular bisector) or Arg(z) =6

e Circle: |z — 22 =c?|zy+ 2% or |z — (a+bi)|=c¢

o Locus: Arg(z) <6
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