Vectors

- vector: a directed line segment
- arrow indicates direction
- length indicates magnitude
- notated as $\vec{a}, \widetilde{A}, \vec{a}$
- column notation: $\left[\begin{array}{l}x \\ y\end{array}\right]$
- vectors with equal magnitude and direction are equivalent

Figure 1:

Vector addition

$u+v$ can be represented by drawing each vector head to tail then joining the lines.
Addition is commutative (parallelogram)

Scalar multiplication

For $k \in \mathbb{R}^{+}, k u$ has the same direction as u but length is multiplied by a factor of k.

When multiplied by $k<0$, direction is reversed and length is multplied by k.

Vector subtraction

To find $u-v$, add $-v$ to u

Parallel vectors

Parallel vectors have same direction or opposite direction.

Two non-zero vectors u and v are parallel if there is some $k \in \mathbb{R} \quad\{0\}$ such at $u=k v$

Position vectors

Vectors may describe a position relative to O.
For a point A, the position vector is $\overrightarrow{O A}$

Linear combinations of non-parallel vectors

If two non-zero vectors a and b are not parallel, then:

$$
m a+n b=p a+q b \quad \therefore \quad m=p, n=q
$$

Column vector notation

A vector between points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ can be represented as $\left[\begin{array}{l}x_{2}-x_{1} \\ y_{2}-y_{1}\end{array}\right]$

Component notation

A vector $u=\left[\begin{array}{l}x \\ y\end{array}\right]$ can be written as $u=x i+y j$. u is the sum of two components $x i$ and $y j$
Magnitude of vector $u=x i+y j$ is denoted by $|u|=$ $\sqrt{x^{2}+y^{2}}$
Basic algebra applies:
$(x i+y j)+(m i+n j)=(x+m) i+(y+n) j$
Two vectors equal if and only if their components are equal.

Unit vectors

A vector of length $1 . i$ and j are unit vectors.
A unit vector in direction of a is denoted by \hat{a} :

$$
\hat{a}=\frac{1}{|a|} a \quad(\Longrightarrow|\hat{a}|=1)
$$

Also, unit vector of a can be defined by $a \cdot|a|$

Scalar products / dot products

If $a=a_{i} i+a_{2} j$ and $b=b_{i} i+b_{2} j$, the dot product is:

$$
a \cdot b=a_{1} b_{1}+a_{2} b_{2}
$$

Produces a real number, not a vector.

$$
a \cdot a=|a|^{2}
$$

on CAS: $\operatorname{dotP}\left(\left[\begin{array}{ll}a & b \\ c\end{array}\right],[d e f]\right)$

Scalar product properties

1. $k(a \cdot b)=(k a) \cdot b=a \cdot(k b)$
2. $a \cdot 0=0$
3. $a \cdot(b+c)=a \cdot b+a \cdot c$
4. $i \cdot i=j \cdot j=k \cdot k=1$
5. If $a \cdot b=0, a$ and b are perpendicular
6. $a \cdot a=|a|^{2}=a^{2}$

For parallel vectors a and b :

$$
a \cdot b= \begin{cases}|a||b| & \text { if same direction } \\ -|a||b| & \text { if opposite directions }\end{cases}
$$

Geometric scalar products

$$
a \cdot b=|a||b| \cos \theta
$$

where $0 \leq \theta \leq \pi$

Perpendicular vectors

If $a \cdot b=0$, then $a \perp b($ since $\cos 90=0)$

Finding angle between vectors

positive direction

$$
\cos \theta=\frac{a \cdot b}{|a||b|}=\frac{a_{1} b_{1}+a_{2} b_{2}}{|a||b|}
$$

on CAS: angle ([$\left.\begin{array}{lll}a & b & c\end{array}\right]$, $\left[\begin{array}{lll}a & b & c\end{array}\right]$) (Action $->$ Vector -> Angle)

Vector projections

Vector resolute of a in direction of b is magnitude of a in direction of b.

$$
u=\frac{a \cdot b}{|b|^{2}} b=\left(a \cdot \frac{b}{|b|}\right)\left(\frac{b}{|b|}\right)=(a \cdot \hat{b}) \hat{b}
$$

Scalar resolute of \vec{a} on $\vec{b}=|\vec{u}|=\vec{a} \cdot \hat{\vec{b}}$ (results in a scalar) Vector resolute of \vec{a} perpendicular to b is equal to $\vec{a}-\vec{u}$ where \vec{u} is vector projection of \vec{a} on \vec{b}

Vector proofs

Concurrent lines $-\geq 3$ lines intersect at a single point Collinear points $-\geq 3$ points lie on the same line $(\Longrightarrow$ $\overrightarrow{O C}=\lambda \overrightarrow{O A}+\mu \overrightarrow{O B}$ where $\lambda+\mu=1$. If C is between $\overrightarrow{A B}$, then $0<\mu<1$)

Useful vector properties:

- If a and b are parallel, then $b=k a$ for some $k \in$ $\mathbb{R}\{0\}$
- If a and b are parallel with at least one point in common, then they lie on the same straight line
- Two vectors a and b are perpendicular if $a \cdot b=0$
- $a \cdot a=|a|^{2}$

Linear dependence

Vectors $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent if they are nonparallel and:

$$
\begin{gathered}
k \vec{a}+\vec{l} \vec{b}+m \vec{c}=0 \\
\therefore \vec{c}=m \vec{a}+n \vec{b} \quad \text { (simultaneous) }
\end{gathered}
$$

\vec{a}, \vec{b}, and \vec{c} are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel.

Vector \vec{w} is a linear combination of vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$

Three-dimensional vectors

Right-hand rule for axes - z is up or out of page.

Angle between vector and axis

Direction of a vector can be given by the angles it makes with $\vec{i}, \vec{j}, \vec{k}$ directions.
For $\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$ which makes angles α, β, γ with positive direction of x, y, z axes:

$$
\cos \alpha=\frac{a_{1}}{|\vec{a}|}, \quad \cos \beta=\frac{a_{2}}{|\vec{a}|}, \quad \cos \gamma=\frac{a_{3}}{|\vec{a}|}
$$

on CAS: angle ([$\left.\begin{array}{lll}a & b & c\end{array}\right]$, $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$) for angle between $a \vec{i}+b \vec{j}+c \vec{k}$ and x-axis

Collinearity

Points A, B, C are collinear iff $\overrightarrow{A C}=m \overrightarrow{A B}$ where $m \neq 0$

