#### **Complex numbers** 1

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

Cartesian form: a + bi

Polar form:  $r \operatorname{cis} \theta$ 

## **O**perations

|                 | Cartesian                          | Polar                                                                  | z               |
|-----------------|------------------------------------|------------------------------------------------------------------------|-----------------|
| $z_1 \pm z_2$   | $(a \pm c)(b \pm d)i$              | convert to $a + bi$                                                    | _               |
| $+k \times z$   | lag + labi                         | $kr \operatorname{cis} \theta$                                         |                 |
| $-k \times z$   | $\kappa a \pm \kappa o i$          | $kr \operatorname{cis}(\theta \pm \pi)$                                |                 |
| $z_1 \cdot z_2$ | ac-bd+(ad+bc)i                     | $r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$                      |                 |
| $z_1 \div z_2$  | $(z_1\overline{z_2}) \div  z_2 ^2$ | $\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)$ | Dividing over C |

#### Scalar multiplication in polar form

For  $k \in \mathbb{R}^+$ :

$$k\left(r \operatorname{cis} \theta\right) = kr \operatorname{cis} \theta$$

For  $k \in \mathbb{R}^-$ :

$$k(r \operatorname{cis} \theta) = kr \operatorname{cis} \left( \begin{cases} \theta - \pi & 0 < \operatorname{Arg}(z) \le \pi \\ \theta + \pi & -\pi < \operatorname{Arg}(z) \le 0 \end{cases} \right)$$

## Conjugate

$$\overline{z} = a \mp bi$$
$$= r \operatorname{cis}(-\theta)$$

On CAS: conjg(a+bi)

## Properties

$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$
$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$
$$\overline{kz} = k\overline{z} \quad | \quad k \in \mathbb{R}$$
$$z\overline{z} = (a + bi)(a - bi)$$
$$= a^2 + b^2$$
$$= |z|^2$$

## Modulus

$$|z|=|\vec{Oz}|=\sqrt{a^2+b^2}$$

## Properties

$$|z_1 z_2| = |z_1| |z_2|$$
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
$$|z_1 + z_2| \le |z_1| + |z_2|$$

## Multiplicative inverse

| $z^{-1}$ | = | $\frac{a-bi}{a^2+b^2}$          |
|----------|---|---------------------------------|
|          | = | $\frac{\overline{z}}{ z ^2}a$   |
|          | = | $r \operatorname{cis}(-\theta)$ |

## 7

$$\frac{z_1}{z_2} = z_1 z_2^{-1}$$
  
=  $\frac{z_1 \overline{z_2}}{|z_2|^2}$   
=  $\frac{(a+bi)(c-di)}{c^2+d^2}$ 

(rationalise denominator)

## Polar form

$$z = r \operatorname{cis} \theta$$
$$= r(\cos \theta + i \sin \theta)$$

- $r = |z| = \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$
- $\theta = \arg(z)$  On CAS: arg(a+bi)
- $\operatorname{Arg}(z) \in (-\pi, \pi)$  (principal argument)
- Convert on CAS:  $compToTrig(a+bi) \iff cExpand{r\cdot cisX}$
- Multiple representations:  $r \operatorname{cis} \theta = r \operatorname{cis}(\theta + 2n\pi)$  with  $n \in \mathbb{Z}$  revolutions
- $cis \pi = -1$ ,  $\cos 0 = 1$

## de Moivres' theorem

 $(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta)$  where  $n \in \mathbb{Z}$ 

## Complex polynomials

| Include | +        | for | all      | solutions. | incl. | imaginary |
|---------|----------|-----|----------|------------|-------|-----------|
| monuuc  | <u> </u> | 101 | $a_{11}$ | solutions, | mor.  | magmary   |

| Sum of squares | $z^{2} + a^{2} = z^{2} - (ai)^{2}$<br>= $(z + ai)(z - ai)$ |
|----------------|------------------------------------------------------------|
| Sum of cubes   | $a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$                |
| Division       | P(z) = D(z)Q(z) + R(z)                                     |
| Remainder      | Let $\alpha \in \mathbb{C}$ . Remainder of                 |
| theorem        | $P(z) \div (z - \alpha)$ is $P(\alpha)$                    |
| Factor theorem | $z - \alpha$ is a factor of $P(z) \iff$                    |
| _              | $P(\alpha) = 0$ for $\alpha \in \mathbb{C}$                |
| Conjugate root | $P(z) = 0$ at $z = a \pm bi$ ( $\Longrightarrow$           |
| theorem        | both $z_1$ and $\overline{z_1}$ are solutions)             |

## Roots

*n*th roots of  $z = r \operatorname{cis} \theta$  are:

$$z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta + 2k\pi}{n}\right)$$

- Same modulus for all solutions
- Arguments are separated by  $\frac{2\pi}{n}$
- Solutions of  $z^n = a$  where  $a \in \mathbb{C}$  lie on the circle  $x^2 + y^2 = \left(|a|^{\frac{1}{n}}\right)^2$  (intervals of  $\frac{2\pi}{n}$ )

For  $0 = az^2 + bz + c$ , use quadratic formula:

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

## Fundamental theorem of algebra

A polynomial of degree n can be factorised into n linear factors in  $\mathbb{C}$ :

$$\implies P(z) = a_n(z - \alpha_1)(z - \alpha_2)(z - \alpha_3)\dots(z - \alpha_n)$$

where 
$$\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n \in \mathbb{C}$$

## Argand planes



- Multiplication by  $i \implies$  CCW rotation of  $\frac{\pi}{2}$
- Addition:  $z_1 + z_2 \equiv \overrightarrow{Oz_1} + \overrightarrow{Oz_2}$

## Sketching complex graphs

## Linear

- $\operatorname{Re}(z) = c$  or  $\operatorname{Im}(z) = c$  (perpendicular bisector)
- $\operatorname{Im}(z) = m \operatorname{Re}(z)$
- $|z+a| = |z+b| \implies 2(a-b)x = b^2 a^2$

#### Circles

• 
$$|z - z_1|^2 = c^2 |z_2 + 2|^2$$
  
•  $|z - (a + bi)| = c$ 

**Loci** 
$$\operatorname{Arg}(z) < \theta$$



**Rays** 
$$\operatorname{Arg}(z-b) = \theta$$



## 2 Vectors

- vector: a directed line segment
- arrow indicates direction
- length indicates magnitude
- notated as  $\vec{a}, \widetilde{A}, \vec{a}$
- column notation:  $\begin{bmatrix} x \\ y \end{bmatrix}$
- vectors with equal magnitude and direction are equivalent

## 2.1 Vector addition

u + v can be represented by drawing each vector head to tail then joining the lines.

Addition is commutative (parallelogram)

## 2.2 Scalar multiplication

For  $k \in \mathbb{R}^+$ , ku has the same direction as u but length is multiplied by a factor of k.

When multiplied by k < 0, direction is reversed and length is multiplied by k.

## 2.3 Vector subtraction

To find  $\boldsymbol{u} - \boldsymbol{v}$ , add  $-\boldsymbol{v}$  to  $\boldsymbol{u}$ 

#### 2.4 Parallel vectors

Same or opposite direction

 $\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v}$  where  $k \in \mathbb{R} \setminus \{0\}$ 

#### 2.5 Position vectors

Vectors may describe a position relative to O.

For a point A, the position vector is  $\overrightarrow{OA}$ 

# 2.6 Linear combinations of non-parallel vectors

If two non-zero vectors  $\boldsymbol{a}$  and  $\boldsymbol{b}$  are not parallel, then:

$$m\mathbf{a} + n\mathbf{b} = p\mathbf{a} + q\mathbf{b}$$
  $\therefore$   $m = p, n = q$ 

## 2.7 Column vector notation

A vector between points  $A(x_1, y_1)$ ,  $B(x_2, y_2)$  can be represented as  $\begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \end{bmatrix}$ 

## 2.8 Component notation

A vector  $\boldsymbol{u} = \begin{bmatrix} x \\ y \end{bmatrix}$  can be written as  $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$ .  $\boldsymbol{u}$  is the sum of two components  $x\boldsymbol{i}$  and  $y\boldsymbol{j}$ Magnitude of vector  $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$  is denoted by  $|\boldsymbol{u}| = \sqrt{x^2 + y^2}$ 

Basic algebra applies:

 $(x\mathbf{i} + y\mathbf{j}) + (m\mathbf{i} + n\mathbf{j}) = (x+m)\mathbf{i} + (y+n)\mathbf{j}$ 

Two vectors equal if and only if their components are equal.

2.9 Unit vector 
$$|\hat{a}| = 1$$
  
 $\hat{a} = \frac{1}{|a|}a$   
 $= a \cdot |a|$  (1)

Scalar/dot product  $a \cdot b$ 

 $\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2$ 

on CAS: dotP([a b c], [d e f])

## 2.10 Scalar product properties

1.  $k(\boldsymbol{a} \cdot \boldsymbol{b}) = (k\boldsymbol{a}) \cdot \boldsymbol{b} = \boldsymbol{a} \cdot (k\boldsymbol{b})$ 2.  $\boldsymbol{a} \cdot \boldsymbol{0} = 0$ 3.  $\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c}) = \boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}$ 4.  $\boldsymbol{i} \cdot \boldsymbol{i} = \boldsymbol{j} \cdot \boldsymbol{j} = \boldsymbol{k} \cdot \boldsymbol{k} = 1$ 5. If  $\boldsymbol{a} \cdot \boldsymbol{b} = 0$ ,  $\boldsymbol{a}$  and  $\boldsymbol{b}$  are perpendicular 6.  $\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2 = a^2$  For parallel vectors  $\boldsymbol{a}$  and  $\boldsymbol{b}:$ 

$$m{a} \cdot m{b} = egin{cases} |m{a}||m{b}| & ext{ if same direction} \ -|m{a}||m{b}| & ext{ if opposite directions} \end{cases}$$

## 2.11 Geometric scalar products

$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$$

where  $0 \le \theta \le \pi$ 

## 2.12 Perpendicular vectors

If  $\boldsymbol{a} \cdot \boldsymbol{b} = 0$ , then  $\boldsymbol{a} \perp \boldsymbol{b}$  (since  $\cos 90 = 0$ )

#### 2.13 Finding angle between vectors

positive direction

$$\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}||\boldsymbol{b}|}$$

on CAS: angle([a b c], [a b c]) (Action ->
Vector -> Angle)

#### 2.14 Angle between vector and axis

Direction of a vector can be given by the angles it makes with i, j, k directions.

For  $\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}$  which makes angles  $\alpha, \beta, \gamma$ with positive direction of x, y, z axes:

$$\cos \alpha = \frac{a_1}{|\boldsymbol{a}|}, \quad \cos \beta = \frac{a_2}{|\boldsymbol{a}|}, \quad \cos \gamma = \frac{a_3}{|\boldsymbol{a}|}$$

on CAS: angle([a b c], [1 0 0]) for angle between ai + bj + ck and x-axis

## 2.15 Vector projections

Vector resolute of a in direction of b is magnitude of a in direction of b:

$$oldsymbol{u} = rac{oldsymbol{a} \cdot oldsymbol{b}}{|oldsymbol{b}|^2} oldsymbol{b} = igg(oldsymbol{a} \cdot rac{oldsymbol{b}}{|oldsymbol{b}|}igg) = (oldsymbol{a} \cdot oldsymbol{\hat{b}}igg)$$

## 2.16 Scalar resolute of a on b

$$r_s = |\boldsymbol{u}| = \boldsymbol{a} \cdot \hat{\boldsymbol{b}}$$

## 2.17 Vector resolute of $a \perp b$

w = a - u where u is projection a on b

#### 2.18 Vector proofs

#### 2.18.1 Concurrent lines

 $\geq$  3 lines intersect at a single point

#### 2.18.2 Collinear points

 $\geq$  3 points lie on the same line

 $\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB} \text{ where } \lambda + \mu = 1. \text{ If } C \text{ is}$ between  $\vec{AB}$ , then  $0 < \mu < 1$ Points A, B, C are collinear iff  $\vec{AC} = m\vec{AB}$  where  $m \neq 0$ 

#### 2.18.3 Useful vector properties

- If  $\boldsymbol{a}$  and  $\boldsymbol{b}$  are parallel, then  $\boldsymbol{b} = k\boldsymbol{a}$  for some  $k \in \mathbb{R} \setminus \{0\}$
- If *a* and *b* are parallel with at least one point in common, then they lie on the same straight line
- Two vectors  $\boldsymbol{a}$  and  $\boldsymbol{b}$  are perpendicular if  $\boldsymbol{a} \cdot \boldsymbol{b} = 0$

• 
$$\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$$

#### 2.19 Linear dependence

Vectors a, b, c are linearly dependent if they are nonparallel and:

$$k\boldsymbol{a} + l\boldsymbol{b} + m\boldsymbol{c} = 0$$
  
 $\therefore \boldsymbol{c} = m\boldsymbol{a} + n\boldsymbol{b}$  (simultaneous)

*a*, *b*, and *c* are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel.

Vector  $\boldsymbol{w}$  is a linear combination of vectors  $\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}$ 

#### 2.20 Three-dimensional vectors

Right-hand rule for axes: z is up or out of page.

# 2.21 Parametric vectors

|                                                             | $\int x = x_o + a \cdot t$ |     |
|-------------------------------------------------------------|----------------------------|-----|
| Parametric equation of line through point $(x_0, y_0, z_0)$ | $y = y_0 + b \cdot t$      | (2) |
| and parallel to $ai + bj + ck$ is:                          | $z = z_0 + c \cdot t$      |     |