1 Complex numbers

$$
\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}
$$

Cartesian form: $a+b i$
Polar form: $r \operatorname{cis} \theta$

Properties

$$
\begin{aligned}
\left|z_{1} z_{2}\right| & =\left|z_{1}\right|\left|z_{2}\right| \\
\left|\frac{z_{1}}{z_{2}}\right| & =\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \\
\left|z_{1}+z_{2}\right| & \leq\left|z_{1}\right|+\left|z_{2}\right|
\end{aligned}
$$

Multiplicative inverse

$$
\begin{aligned}
z^{-1} & =\frac{a-b i}{a^{2}+b^{2}} \\
& =\frac{\bar{z}}{|z|^{2}} a \\
& =r \operatorname{cis}(-\theta)
\end{aligned}
$$

Dividing over \mathbb{C}

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =z_{1} z_{2}^{-1} \\
& =\frac{z_{1} \overline{z_{2}}}{\left|z_{2}\right|^{2}} \\
& =\frac{(a+b i)(c-d i)}{c^{2}+d^{2}}
\end{aligned}
$$

(rationalise denominator)

Polar form

Conjugate

$$
\begin{aligned}
\bar{z} & =a \mp b i \\
& =r \operatorname{cis}(-\theta)
\end{aligned}
$$

On CAS: conjg(a+bi)

Properties

$$
\begin{aligned}
\overline{z_{1} \pm z_{2}} & =\overline{z_{1}} \pm \overline{z_{2}} \\
\overline{z_{1} \cdot z_{2}} & =\overline{z_{1}} \cdot \overline{z_{2}} \\
\overline{k z} & =k \bar{z} \quad \mid \quad k \in \mathbb{R} \\
z \bar{z} & =(a+b i)(a-b i) \\
& =a^{2}+b^{2} \\
& =|z|^{2}
\end{aligned}
$$

Modulus

$$
|z|=|\overrightarrow{O z}|=\sqrt{a^{2}+b^{2}}
$$

$$
\begin{aligned}
z & =r \operatorname{cis} \theta \\
& =r(\cos \theta+i \sin \theta)
\end{aligned}
$$

- $r=|z|=\sqrt{\operatorname{Re}(z)^{2}+\operatorname{Im}(z)^{2}}$
- $\theta=\arg (z) \quad$ On CAS: $\arg (\mathrm{a}+\mathrm{bi})$
- $\operatorname{Arg}(z) \in(-\pi, \pi) \quad$ (principal argument)
- Convert on CAS:

$$
\text { compToTrig(a+bi) } \Longleftrightarrow \text { cExpand\{r•cisX }\}
$$

- Multiple representations:
$r \operatorname{cis} \theta=r \operatorname{cis}(\theta+2 n \pi)$ with $n \in \mathbb{Z}$ revolutions
- $\operatorname{cis} \pi=-1, \quad \operatorname{cis} 0=1$

$$
(r \operatorname{cis} \theta)^{n}=r^{n} \operatorname{cis}(n \theta) \text { where } n \in \mathbb{Z}
$$

Complex polynomials

Include \pm for all solutions, incl. imaginary

Sum of squares	$z^{2}+a^{2}=z^{2}-(a i)^{2}$ Sum of cubes
Division	$a^{3} \pm b^{3}=(z+a i)(z-a i)$
Remainder	$P(z)=D(z) Q(z)+R(z)$
Let $\alpha \in \mathbb{C}$. Remainder of	
theorem	$P(z) \div(z-\alpha)$ is $P(\alpha)$
Factor theorem	$z-\alpha$ is a factor of $P(z) \Longleftrightarrow$
	$P(\alpha)=0$ for $\alpha \in \mathbb{C}$
Conjugate root	$P(z)=0$ at $z=a \pm b i(\Longrightarrow$
theorem	both z_{1} and $\overline{z_{1}}$ are solutions)

Argand planes

- Multiplication by $i \Longrightarrow$ CCW rotation of $\frac{\pi}{2}$
- Addition: $z_{1}+z_{2} \equiv \stackrel{\rightharpoonup}{O z_{1}}+\stackrel{\rightharpoonup}{O z_{2}}$

Sketching complex graphs

Linear

- $\operatorname{Re}(z)=c$ or $\operatorname{Im}(z)=c$ (perpendicular bisector)
- $\operatorname{Im}(z)=m \operatorname{Re}(z)$
- $|z+a|=|z+b| \Longrightarrow 2(a-b) x=b^{2}-a^{2}$

Circles

- $\left|z-z_{1}\right|^{2}=c^{2}\left|z_{2}+2\right|^{2}$
- $|z-(a+b i)|=c$

Loci $\quad \operatorname{Arg}(z)<\theta$

Rays $\quad \operatorname{Arg}(z-b)=\theta$

2 Vectors

- vector: a directed line segment
- arrow indicates direction
- length indicates magnitude
- notated as $\vec{a}, \widetilde{A}, \vec{a}$
- column notation: $\left[\begin{array}{l}x \\ y\end{array}\right]$
- vectors with equal magnitude and direction are equivalent

2.1 Vector addition

$\boldsymbol{u}+\boldsymbol{v}$ can be represented by drawing each vector head to tail then joining the lines.
Addition is commutative (parallelogram)

2.2 Scalar multiplication

For $k \in \mathbb{R}^{+}, k \boldsymbol{u}$ has the same direction as \boldsymbol{u} but length is multiplied by a factor of k.

When multiplied by $k<0$, direction is reversed and length is multplied by k.

2.3 Vector subtraction

To find $\boldsymbol{u}-\boldsymbol{v}$, add $\boldsymbol{- v}$ to \boldsymbol{u}

2.4 Parallel vectors

Same or opposite direction

$$
\boldsymbol{u} \| \boldsymbol{v} \Longleftrightarrow \boldsymbol{u}=k \boldsymbol{v} \text { where } k \in \mathbb{R} \backslash\{0\}
$$

2.5 Position vectors

Vectors may describe a position relative to O.
For a point A, the position vector is $\overrightarrow{O A}$

2.6 Linear combinations of non-parallel vectors

If two non-zero vectors \boldsymbol{a} and \boldsymbol{b} are not parallel, then:

$$
m \boldsymbol{a}+n \boldsymbol{b}=p \boldsymbol{a}+q \boldsymbol{b} \quad \therefore \quad m=p, n=q
$$

2.7 Column vector notation

A vector between points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ can be represented as $\left[\begin{array}{l}x_{2}-x_{1} \\ y_{2}-y_{1}\end{array}\right]$

2.8 Component notation

A vector $\boldsymbol{u}=\left[\begin{array}{l}x \\ y\end{array}\right]$ can be written as $\boldsymbol{u}=x \boldsymbol{i}+y \boldsymbol{j}$.
\boldsymbol{u} is the sum of two components $x \boldsymbol{i}$ and $y \boldsymbol{j}$
Magnitude of vector $\boldsymbol{u}=x \boldsymbol{i}+y \boldsymbol{j}$ is denoted by $|u|=$ $\sqrt{x^{2}+y^{2}}$

Basic algebra applies:
$(x \boldsymbol{i}+y \boldsymbol{j})+(m \boldsymbol{i}+n \boldsymbol{j})=(x+m) \boldsymbol{i}+(y+n) \boldsymbol{j}$
Two vectors equal if and only if their components are equal.
2.9 Unit vector $|\hat{\boldsymbol{a}}|=1$

$$
\begin{align*}
\hat{\boldsymbol{a}} & =\frac{1}{|\boldsymbol{a}|} \boldsymbol{a} \tag{1}\\
& =\boldsymbol{a} \cdot|\boldsymbol{a}|
\end{align*}
$$

Scalar/dot product $\boldsymbol{a} \cdot \boldsymbol{b}$

$$
\boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}
$$

on CAS: $\operatorname{dotP}\left(\left[\begin{array}{ll}a & b \\ c\end{array}\right],[d e f]\right)$

2.10 Scalar product properties

1. $k(\boldsymbol{a} \cdot \boldsymbol{b})=(k \boldsymbol{a}) \cdot \boldsymbol{b}=\boldsymbol{a} \cdot(k \boldsymbol{b})$
2. $\boldsymbol{a} \cdot \mathbf{0}=0$
3. $a \cdot(b+c)=a \cdot b+a \cdot c$
4. $\boldsymbol{i} \cdot \boldsymbol{i}=\boldsymbol{j} \cdot \boldsymbol{j}=\boldsymbol{k} \cdot \boldsymbol{k}=1$
5. If $\boldsymbol{a} \cdot \boldsymbol{b}=0, \boldsymbol{a}$ and \boldsymbol{b} are perpendicular
6. $\boldsymbol{a} \cdot \boldsymbol{a}=|\boldsymbol{a}|^{2}=a^{2}$

For parallel vectors \boldsymbol{a} and \boldsymbol{b} :
$\boldsymbol{a} \cdot \boldsymbol{b}= \begin{cases}|\boldsymbol{a}||\boldsymbol{b}| & \text { if same direction } \\ -|\boldsymbol{a}||\boldsymbol{b}| & \text { if opposite directions }\end{cases}$

2.11 Geometric scalar products

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta
$$

where $0 \leq \theta \leq \pi$

2.12 Perpendicular vectors

If $\boldsymbol{a} \cdot \boldsymbol{b}=0$, then $\boldsymbol{a} \perp \boldsymbol{b}($ since $\cos 90=0)$

2.13 Finding angle between vectors

 positive direction$$
\cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}=\frac{a_{1} b_{1}+a_{2} b_{2}}{|\boldsymbol{a}||\boldsymbol{b}|}
$$

on CAS: angle([a b c], [a b c]) (Action -> Vector -> Angle)

2.14 Angle between vector and axis

Direction of a vector can be given by the angles it makes with $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ directions.

For $\boldsymbol{a}=a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}$ which makes angles α, β, γ with positive direction of x, y, z axes:

$$
\cos \alpha=\frac{a_{1}}{|\boldsymbol{a}|}, \quad \cos \beta=\frac{a_{2}}{|\boldsymbol{a}|}, \quad \cos \gamma=\frac{a_{3}}{|\boldsymbol{a}|}
$$

on CAS: angle([acc $\left.\begin{array}{lll}a & b\end{array}\right]$, $\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]$) for angle between $a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k}$ and x-axis

2.15 Vector projections

Vector resolute of \boldsymbol{a} in direction of \boldsymbol{b} is magnitude of \boldsymbol{a} in direction of \boldsymbol{b} :

$$
u=\frac{a \cdot b}{|b|^{2}} b=\left(a \cdot \frac{b}{|b|}\right)\left(\frac{b}{|b|}\right)=(a \cdot \hat{b}) \hat{b}
$$

2.16 Scalar resolute of a on b

$$
r_{s}=|\boldsymbol{u}|=\boldsymbol{a} \cdot \hat{\boldsymbol{b}}
$$

2.17 Vector resolute of $a \perp b$

$$
\boldsymbol{w}=\boldsymbol{a}-\boldsymbol{u} \text { where } \boldsymbol{u} \text { is projection } \boldsymbol{a} \text { on } \boldsymbol{b}
$$

2.18 Vector proofs

2.18.1 Concurrent lines

≥ 3 lines intersect at a single point

2.18.2 Collinear points

≥ 3 points lie on the same line
$\Longrightarrow \overrightarrow{O C}=\lambda \overrightarrow{O A}+\mu \overrightarrow{O B}$ where $\lambda+\mu=1$. If C is between $\overrightarrow{A B}$, then $0<\mu<1$
Points A, B, C are collinear iff $\overrightarrow{A C}=m \overrightarrow{A B}$ where $m \neq$ 0

2.18.3 Useful vector properties

- If \boldsymbol{a} and \boldsymbol{b} are parallel, then $\boldsymbol{b}=k \boldsymbol{a}$ for some $k \in \mathbb{R} \backslash\{0\}$
- If \boldsymbol{a} and \boldsymbol{b} are parallel with at least one point in common, then they lie on the same straight line
- Two vectors \boldsymbol{a} and \boldsymbol{b} are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b}=0$
- $\boldsymbol{a} \cdot \boldsymbol{a}=|\boldsymbol{a}|^{2}$

2.19 Linear dependence

Vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are linearly dependent if they are nonparallel and:

$$
\begin{gathered}
k \boldsymbol{a}+l \boldsymbol{b}+m \boldsymbol{c}=0 \\
\therefore \boldsymbol{c}=m \boldsymbol{a}+n \boldsymbol{b} \quad \text { (simultaneous) }
\end{gathered}
$$

$\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel.

Vector \boldsymbol{w} is a linear combination of vectors v_{1}, v_{2}, v_{3}

2.20 Three-dimensional vectors

Right-hand rule for axes: z is up or out of page.

2.21 Parametric vectors

Parametric equation of line through point $\left(x_{0}, y_{0}, z_{0}\right)$
and parallel to $a \boldsymbol{i}+b \boldsymbol{j}+c \boldsymbol{k}$ is: $\left\{\begin{array}{l}x=x_{o}+a \cdot t \\ y=y_{0}+b \cdot t \\ z=z_{0}+c \cdot t\end{array}\right.$

