| $f(x)$ | $\int f(x) \cdot dx$ |
| ------------------------------- | ---------------------------- |
-| $k$ (constant) | $kx + c$ |
-| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
+| $k$ (constant) | $kx + c$ |
+| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
| $a x^{-n}$ | $a \cdot \log_e x + c$ |
| $e^{kx}$ | ${1 \over k} e^{kx} + c$ |
| $e^k$ | $e^kx + c$ |
To find stationary points of a function, substitute $x$ value of given point into derivative. Solve for ${dy \over dx}=0$. Integrate to find original function.
-