[methods] corrections & layout of collated notes
[notes.git] / spec / spec-collated.tex
index f28326aa90558aaa021f64b22b3849ec46640ca7..f04ab637a29d3c44f0d6953c8452833b2f0ca23b 100644 (file)
@@ -12,6 +12,7 @@
 \usepackage{graphicx}
 \usepackage{wrapfig}
 \usepackage{tikz}
+\usepackage{tkz-fct}
 \usepackage{tikz-3dplot}
 \usepackage{pgfplots}
 \usetikzlibrary{calc}
 
                   \[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
 
-                \end{multicols}
-              \end{document}
+              
+    \section{Kinematics \& Mechanics}
+
+      \subsection*{Constant acceleration}
+
+      \begin{itemize}
+        \item \textbf{Position} - relative to origin
+        \item \textbf{Displacement} - relative to starting point
+      \end{itemize}
+
+      \subsubsection*{Velocity-time graphs}
+
+      \begin{itemize}
+        \item Displacement: \textit{signed} area between graph and \(t\) axis
+        \item Distance travelled: \textit{total} area between graph and \(t\) axis
+      \end{itemize}
+
+      \[ \text{acceleration} = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right) \]
+
+        \begin{center}
+          \renewcommand{\arraystretch}{1}
+          \begin{tabular}{ l r }
+              \hline & no \\ \hline
+              \(v=u+at\) & \(x\) \\
+              \(v^2 = u^2+2as\) & \(t\) \\
+              \(s = \frac{1}{2} (v+u)t\) & \(a\) \\
+              \(s = ut + \frac{1}{2} at^2\) & \(v\) \\
+              \(s = vt- \frac{1}{2} at^2\) & \(u\) \\ \hline
+            \end{tabular}
+        \end{center}
+
+        \[ v_{\text{avg}} = \frac{\Delta\text{position}}{\Delta t} \]
+        \begin{align*}
+          \text{speed} &= |{\text{velocity}}| \\
+          &= \sqrt{v_x^2 + v_y^2 + v_z^2}
+        \end{align*}
+
+        \noindent \textbf{Distance travelled between \(t=a \rightarrow t=b\):}
+        \[= \int^b_a \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \cdot dt \]
+
+        \noindent \textbf{Shortest distance between \(\boldsymbol{r}(t_0)\) and \(\boldsymbol{r}(t_1)\):}
+        \[ = |\boldsymbol{r}(t_1) - \boldsymbol{r}(t_2)| \]
+
+      \subsection*{Vector functions}
+
+        \[ \boldsymbol{r}(t) = x \boldsymbol{i} + y \boldsymbol{j} + z \boldsymbol{k} \]
+
+        \begin{itemize}
+          \item If \(\boldsymbol{r}(t) \equiv\) position with time, then the graph of endpoints of \(\boldsymbol{r}(t) \equiv\) Cartesian path
+          \item Domain of \(\boldsymbol{r}(t)\) is the range of \(x(t)\)
+          \item Range of \(\boldsymbol{r}(t)\) is the range of \(y(t)\)
+        \end{itemize}
+
+      \subsection*{Vector calculus}
+
+      \subsubsection*{Derivative}
+
+        Let \(\boldsymbol{r}(t)=x(t)\boldsymbol{i} + y(t)\boldsymbol(j)\). If both \(x(t)\) and \(y(t)\) are differentiable, then:
+        \[ \boldsymbol{r}(t)=x(t)\boldsymbol{i}+y(t)\boldsymbol{j} \]
+
+  \end{multicols}
+\end{document}