---
-geometry: margin=2cm
+geometry: margin=1.5cm
<!-- columns: 2 -->
graphics: yes
tables: yes
$e^x$ - natural exponential function
-
$$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
## Logarithm laws
$$e= \lim_{n \rightarrow \infty} (1 + {1 \over n})^n$$
-## Literal equations
-
-_Literal equation_ - no numerical solutions
-
## Exponential and logarithmic modelling
$$A = A_0 e^{kt}$$
For continuous growth, $k > 0$
For continuous decay, $k < 0$
-## Graphing expomnential functions
+## Graphing exponential functions
$$f(x)=Aa^{k(x-b)} + c, \quad \vert \> a > 1$$
-- **$y$-intercept** at $(0, A \cdot a^{-kb}+c)$
+- **$y$-intercept** at $(0, A \cdot a^{-kb}+c)$ as $x \rightarrow \infty$
- **horizontal asymptote** at $y=c$
- **domain** is $\mathbb{R}$
- **range** is $(c, \infty)$
- dilation of factor $A$ from $x$-axis
- dilation of factor $1 \over k$ from $y$-axis
+![](graphics/exponential-graphs.png){#id .class width=30%}
+
## Graphing logarithmic functions
-$log_e x$ is the inverse of $e^x$ (reflection across $y=x$)
+$\log_e x$ is the inverse of $e^x$ (reflection across $y=x$)
$$f(x)=A \log_a k(x-b) + c$$
where
- **domain** is $(b, \infty)$
-- **range** is $\mathbb{R}^+$
+- **range** is $\mathbb{R}$
- **vertical asymptote** at $x=b$
- $y$-intercept exists if $b<0$
- dilation of factor $A$ from $x$-axis
- dilation of factor $1 \over k$ from $y$-axis
+![](graphics/log-graphs.png){#id .class width=30%}
+
+## Finding equations
+
+Solve simultaneous equations on CAS: ![](graphics/cas-simultaneous.png){#id .class width=75px}