\[X \sim \operatorname{Bi}(n,p) \]
Then, the probability values for each value of $X$ follow the rule:
- \[ p(x) = \begin{bmatrix}n\\x\end{bmatrix}(p)^x(1-p)^{n-x} \]
+ \[ p(x) = {n \choose x}(p)^x(1-p)^{n-x} \]
\subsection{Continuous random distributions}