update practice exams
[notes.git] / methods / midyear-lecture.tex
index 4bb0d1e96fcf3bc011f8bdd66a20d0a1bd08ee15..a36d13bb3d876576b91d69efdba5903aba4b0021 100644 (file)
   \[X \sim \operatorname{Bi}(n,p) \]
   
   Then, the probability values for each value of $X$ follow the rule:
-  \[ p(x) = \begin{bmatrix}n\\x\end{bmatrix}(p)^x(1-p)^{n-x} \]
+  \[ p(x) = {n \choose x}(p)^x(1-p)^{n-x} \]
 
   \subsection{Continuous random distributions}