solving complex polynomials
[notes.git] / spec / complex.md
index 54c8082b9a4cbee945288ab43da60c99d946f195..871e1d43c7d113963ac32c901d829c2210b29f70 100755 (executable)
@@ -106,13 +106,31 @@ To solve $z^2+a^2=0$ (sum of two squares):
 
 $z^2+a^2=z^2-(ai)^2=(z+ai)(z-ai)$
 
+*Must include $\pm$ in solutions*
+
+## Solving complex polynomials
+
+#### Dividing complex polynomials
+
+Dividing $P(z)$ by $D(z)$ gives quotient $Q(z)$ and remainder $R(z)$ such that:
+
+$$P(z) = D(z)Q(z) + R(z)$$
+
+#### Remainder theorem
+
+Let $\alpha \in \mathbb{C}$. Remainder of $P(z) \div (z - \alpha)$ is $P(\alpha)$
+
+## Conjugate root theorem
+
+Let $P(z)$ be a polynomial with real coefficients. If $a+bi$ is a solution to $P(z)=0$, with $a, b \in \mathbb{R}$, the the conjugate $a-bi$ is also a solution.
+
 ## Polar form
 
 $$\begin{equation}\begin{split}z & =r \operatorname{cis} \theta \\ & = r(\operatorname{cos}\theta+i \operatorname{sin}\theta) \\ & = a + bi \end{split}\end{equation}$$
 
 - $r=|z|$, given by Pythagoras ($r=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$)
-- $\theta=\operatorname{Arg}(z)$ (on CAS: `arg(a+bi)`)
-- **principal argument** is $\operatorname{Arg}(z) \in (-\pi, \pi]$
+- $\theta=\operatorname{arg}(z)$ (on CAS: `arg(a+bi)`)
+- **principal argument** is $\operatorname{Arg}(z) \in (-\pi, \pi]$ (note capital $\operatorname{Arg}$)
 
 Note each complex number has multiple polar representations:
 $z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) where $n$ is integer number of revolutions