---
-geometry: margin=1cm
+geometry: a4paper, margin=2cm
columns: 2
-graphics: yes
-tables: yes
author: Andrew Lorimer
header-includes:
+- \usepackage{fancyhdr}
+- \pagestyle{fancy}
+- \fancyhead[LO,LE]{Year 12 Methods}
+- \fancyhead[CO,CE]{Andrew Lorimer}
+- \usepackage{graphicx}
- \usepackage{tabularx}
+- \usepackage[dvipsnames, table]{xcolor}
---
-
+\linespread{3}
\pagenumbering{gobble}
\renewcommand{\arraystretch}{1.4}
+\definecolor{cas}{HTML}{e6f0fe}
-
-# Methods - Calculus
+# Calculus
## Average rate of change
$$m \operatorname{of} x \in [a,b] = {{f(b)-f(a)}\over {b - a}} = {dy \over dx}$$
-On CAS: Action $\rightarrow$ Calculation $\rightarrow$ Diff $\rightarrow$ ($f(x)$ | $y$) $=\dots$
+\colorbox{cas}{On CAS:} Action $\rightarrow$ Calculation $\rightarrow$ `diff`
## Instantaneous rate of change
**Normal line** - $\perp$ tangent ($m_{{tan}} \cdot m_{\operatorname{norm}} = -1$)
**Secant** $={{f(x+h)-f(x)} \over h}$
-## Strictly increasing
+## Strictly increasing/decreasing
-- **strictly increasing** where $f(x_2) > f(x_1)$ and $x_2 > x_1$
-- **strictly decreasing** where $f(x_2) < f(x_1)$ and $x_2 > x_1$
-- If $f^\prime (x) > 0$ for all $x$ in interval, then $f$ is **strictly increasing**
-- If $f^\prime(x) < 0$ for all $x$ in interval, then $f$ is **strictly decreasing**
+For $x_2$ and $x_1$ where $x_2 > x_1$:
+
+- **strictly increasing** where $f(x_2) > f(x_1)$
+or $f^\prime(x)>0$
+- **strictly decreasing** where $f(x_2) < f(x_1)$
+or $f^\prime(x)<0$
- Endpoints are included, even where gradient $=0$
+\columnbreak
+
### Solving on CAS
-**In main**: type function. Interactive $\rightarrow$ Calculation $\rightarrow$ Line $\rightarrow$ (Normal | Tan line)
-**In graph**: define function. Analysis $\rightarrow$ Sketch $\rightarrow$ (Normal | Tan line). Type $x$ value to solve for a point. Return to show equation for line.
+\colorbox{cas}{\textbf{In main}}: type function. Interactive $\rightarrow$ Calculation $\rightarrow$ Line $\rightarrow$ (Normal | Tan line)
+\colorbox{cas}{\textbf{In graph}}: define function. Analysis $\rightarrow$ Sketch $\rightarrow$ (Normal | Tan line). Type $x$ value to solve for a point. Return to show equation for line.
## Stationary points
## Function derivatives
-\begin{tabularx}{\columnwidth}{rl}
+\definecolor{shade1}{HTML}{ffffff}
+\definecolor{shade2}{HTML}{F0F9E4}
+\rowcolors{1}{shade1}{shade2}
+\begin{tabularx}{\columnwidth}{rX}
\hline \(f(x)\) & \(f^\prime(x)\) \\ \hline
- \(kx^n\) & \(knx^{n-1}\)\tabularnewline
+ \hspace{6em} \(kx^n\) & \(knx^{n-1}\)\tabularnewline
\(g(x) \pm h(x)\) & \(g^\prime (x) \pm h^\prime (x)\)\tabularnewline
\(c\) & \(0\)\tabularnewline
\({u \over v}\) &