graphics: yes
tables: yes
author: Andrew Lorimer
+classoption: twocolumn
+
---
+<!-- \renewcommand{\arraystretch}{2} -->
# Spec - Calculus
## Gradients
## Derivatives
+
+
| $f(x)$ | $f^\prime(x)$ |
-| ------ | ------------- |
+| --- | --- |
| $kx^n$ | $knx^{n-1}$ |
| $g(x) + h(x)$ | $g^\prime (x) + h^\prime (x)$ |
-| $c$ | $0$ |
+| $c$ | $0$ |
| ${u \over v}$ | ${{v{du \over dx} - u{dv \over dx}} \over v^2}$ |
| $uv$ | $u{dv \over dx} + v{du \over dx}$ |
| $f \circ g$ | ${dy \over du} \cdot {du \over dx}$ |
+
+
## Product rule for $y=uv$
$${dy \over dx} = u{dv \over dx} + v{du \over dx}$$
- area enclosed by curves
| $f(x)$ | $\int f(x) \cdot dx$ |
-| --------------- | ------------------ |
+| ----|--- |
| $k$ (constant) | $kx + c$ |
| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
| $a x^{-n}$ | $a \cdot \log_e x + c$ |
**acceleration $a$** - change in velocity
**speed** - magnitude of velocity
+
+
| | no |
| - | -- |
| $v=u+at$ | $s$ |
| $s=ut + {1 \over 2} at^2$ | $v$ |
| $v^2 = u^2 + 2as$ | $t$ |
| $s= {1 \over 2}(u+v)t$ | $a$ |
+