Merge branch 'master' of ssh://charles/tank/andrew/school/notes
[notes.git] / physics / final.tex
index 4628ed0ac6ef18b0fcfa57a0311519543c000455..57f04de7456fce6a0140ddc4e990ef732cdf8991 100644 (file)
@@ -81,6 +81,8 @@
 
     $T-mg = {{mv^2} \over r}$ at lowest point
 
+    $E_K_{\text{bottom}}=E_K_{\text{top}}+mgh$
+
 % -----------------------
   \subsection*{Projectile motion}
     \begin{itemize}
       \item vertical component gravity: $a_y = -g$
     \end{itemize}
 
-    \begin{align*}
-      v=\sqrt{v^2_x + v^2_y} \tag{vectors} \\
-      h={{u^2\sin \theta ^2}\over 2g} \tag{max height}\\
-      x=ut\cos\theta \tag{$\Delta x$ at $t$} \\
-      y=ut \sin \theta-{1 \over 2}gt^2 \tag{height at $t$} \\
-      t={{2u\sin\theta}\over g} \tag{time of flight}\\
-      d={v^2 \over g}\sin \theta \tag{horiz. range} \\
-    \end{align*}
+    \begin{align*}
+      $v=\sqrt{v^2_x + v^2_y}$ \hfill vectors \\
+      $h={{u^2\sin \theta ^2}\over 2g}$ \hfill max height \\
+      $x=ut\cos\theta$ \hfill $\Delta x$ at $t$ \\
+      $y=ut \sin \theta-{1 \over 2}gt^2$ \hfill height at $t$ \\
+      $t={{2u\sin\theta}\over g}$ \hfill time of flight \\
+      $d={v^2 \over g}\sin \theta$ \hfill horiz. range \\
+    \end{align*}
 
     \includegraphics[height=3.2cm]{graphics/projectile-motion.png}
 
 % -----------------------
   \subsection*{Hooke's law}
 
-  $F=-kx$
+  $F=-kx$ (intercepts origin)
 
   $\text{elastic potential energy} = {1 \over 2}kx^2$
 
   $x={2mg \over k}$
 
+  Vertical: $\Delta E = {1 \over 2}kx^2 + mgh
+
 % -----------------------
   \subsection*{Motion equations}
 
 % -----------------------
   \subsection*{Lorentz factor}
 
-    $$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}$$
+    $$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}, \quad v = c\sqrt{1-{1 \over \gamma^2}}$$
 
     $t=t_0 \gamma$ ($t$ longer in moving frame)
 
 
     $m=m_0 \gamma$ (mass dilation)
 
-    $$v = c\sqrt{1-{1 \over \gamma^2}}$$
-
 % -----------------------
   \subsection*{Energy and work}
 
 
   \subsection*{Non-contact forces}
     \begin{itemize}
-      {\item electric fields (dipoles \& monopoles)}
-      {\item magnetic fields (dipoles only)}
-      {\item gravitational fields (monopoles only)}
+      {\item electric (dipoles \& monopoles)}
+      {\item magnetic (dipoles only)}
+      {\item gravitational (monopoles only, $F_g=0$ at mid, attractive only)}
     \end{itemize}
 
     \vspace{1em}
 
     \begin{itemize}
       \item monopoles: lines towards centre
-      \item dipoles: field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (or perpendicular to wire)
+      \item dipoles: field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (two magnets) or $\rightarrow$ N (single)
       \item closer field lines means larger force
       \item dot: out of page, cross: into page
       \item +ve corresponds to N pole
 % -----------------------
   \subsection*{Satellites}
 
-    \[v=\sqrt{Gm_{\operatorname{planet}} \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
+    \[v=\sqrt{GM \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
 
-    \[T={\sqrt{4 \pi^2 r^3} \over {GM_\text{planet}}}\tag{period}\]
+    \[T={\sqrt{4 \pi^2 r^3 \over {GM}}}\tag{period}\]
 
     \[r = \sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\]
 
 % -----------------------
   \subsection*{Electric fields}
 
-    \[F=qE \tag{$E$ = strength} \]
+    \[F=qE(=ma) \tag{strength} \]
     \[F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \]
     \[E=k{q \over r^2} \tag{field on point charge} \]
     \[E={V \over d} \tag{field between plates}\]
     \[F=BInl \tag{force on a coil} \]
     \[\Phi = B_{\perp}A\tag{magnetic flux} \]
-    \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{induced emf} \]
+    \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} = Blv\tag{induced emf} \]
     \[{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \]
 
     \textbf{Lenz's law:}  $I_{\operatorname{emf}}$ opposes $\Delta \Phi$ \\
-    (emf creates $I$ with associated field that opposes $\Delta \phi$)
+    (emf creates $I$ with associated field that opposes $\Delta \Phi$)
 
     \textbf{Eddy currents:} counter movement within a field
 
     \textbf{Flux-time graphs:} $m \times n = \operatorname{emf}.$
     If $f$ increases, ampl. \& $f$ of $\mathcal{E}$ increase
 
-    \textbf{Transformers:} core strengthens \& focuses $\Phi$
+    \textbf{Xfmr} core strengthens \& focuses $\Phi$
 
 % -----------------------
   \subsection*{Particle acceleration}
     \[W={1\over2}mv^2=qV \tag{field or points}\]
     \[v=\sqrt{{2qV} \over {m}}\tag{velocity of particle}\]
 
+    Circular path: $F\perp B \perp v$
 
 % -----------------------
   \subsection*{Power transmission}
   \includegraphics[width=4.5cm]{graphics/poissons-spot.png} \\
   Poissons's spot supports wave theory (circular diffraction)
 
-  \textbf{Standing waves} - constructive int. at resonant freq
+  \textbf{Standing waves} - constructive int. at resonant freq. Rebound from ends.
 
   \textbf{Coherent } - identical frequency, phase, direction (ie strong & directional). e.g. laser
 
 
   % -----------------------
   \subsection*{Polarisation}
-  \includegraphics[height=3.5cm]{graphics/polarisation.png}
+  \includegraphics[height=3.5cm]{graphics/polarisation.png} \\
+  Transverse only. Reduces total $A$.
 
   % -----------------------
   \subsection*{Diffraction}
   \subsection*{Refraction}
   \includegraphics[height=3.5cm]{graphics/refraction.png}
 
-  When a medium changes character, energy is \emph{reflected}, \emph{absorbed}, and \emph{transmitted}
+  When a medium changes character, light is \emph{reflected}, \emph{absorbed}, and \emph{transmitted}
 
   angle of incidence $\theta_i =$ angle of reflection $\theta_r$
 
 
   $n_1 v_1 = n_2 v_2$
 
+  $n={c \over v}$
+
 
 % +++++++++++++++++++++++
 \section{Light and Matter}
 
   \subsection*{De Broglie's theory}
 
-  \[ \lambda = {h \over \rho} = {h \over mv} \]
+  \[ \lambda = {h \over \rho} = {h \over mv} = {h \over {m \sqrt{2W \over m}}}\]
   \[ \rho = {hf \over c} = {h \over \lambda} = mv, \quad E = \rho c \]
   \[ v = \sqrt{2E_K \div m} \]
+
   \begin{itemize}
     \item cannot confirm with double-slit (slit $< r_{\operatorname{proton}}$)
     \item confirmed by e- and x-ray patterns
   \subsubsection*{Stopping potential $V_0$ for min $I$}
 
   $$V_0=h_{\text{eV}}(f-f_0)$$
+  Opposes induced photocurrent
 
   \subsubsection*{Graph features}
 
@@ -555,6 +563,7 @@ $f \cdot V$ & ${h \over q}$ & $f_0$ & $-\phi \over q$ &
     \item predicts delay between incidence and ejection
     \item speed depends on medium
     \item supported by bright spot in centre
+    \item $\lambda = {hc \over E}$
   \end{itemize}
 
   \subsubsection*{particle model}
@@ -567,6 +576,7 @@ $f \cdot V$ & ${h \over q}$ & $f_0$ & $-\phi \over q$ &
     \item light exerts force
     \item light bent by gravity
     \item quantised energy
+    \item $\lambda = {h \over \rho}$
   \end{itemize}
 
   % +++++++++++++++++++++++
@@ -599,4 +609,8 @@ $f \cdot V$ & ${h \over q}$ & $f_0$ & $-\phi \over q$ &
 
 \end{multicols}
 
+\begin{center}
+  \includegraphics[height=2.95cm]{graphics/spectrum.png}
+\end{center}
+
 \end{document}