---
+geometry: margin=2cm
+<!-- columns: 2 -->
+graphics: yes
+tables: yes
+author: Andrew Lorimer
+classoption: twocolumn
header-includes:
- - \documentclass{standalone}
- - \usepackage{cleveref}
- - \usepackage{harpoon}
- - \usepackage{accent}
- - \usepackage{amsmath}
-...
+- \usepackage{harpoon}
+- \usepackage{amsmath}
+- \pagenumbering{gobble}
+
+---
# Vectors
Vectors may describe a position relative to $O$.
-For a point $A$, the position vector is $\boldsymbol{OA}$
+For a point $A$, the position vector is $\overrightharp{OA}$
+
+\vfill\eject
## Linear combinations of non-parallel vectors
If two non-zero vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are not parallel, then:
-$$m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad\text{implies}\quad m = p, \> n = q$$
+$$m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad \therefore \quad m = p, \> n = q$$
+
+![](graphics/parallelogram-vectors.jpg){#id .class width=20%}
+![](graphics/vector-subtraction.jpg){#id .class width=10%}
## Column vector notation
$$\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$$
+**on CAS:** `dotP([a b c], [d e f])`
+
+## Scalar product properties
+
+1. $k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k{b})$
+2. $\boldsymbol{a \cdot 0}=0$
+3. $\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}$
+4. $\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1$
+5. If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular
+6. $\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2$
+
+For parallel vectors $\boldsymbol{a}$ and $\boldsymbol{b}$:
+$$\boldsymbol{a \cdot b}=\begin{cases}
+|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
+-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
+\end{cases}$$
+
## Geometric scalar products
$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$$
## Finding angle between vectors
+**positive direction**
+
$$\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}$$
+**on CAS:** `angle([a b c], [a b c])` (Action -> Vector -> Angle)
+
## Vector projections
## Vector proofs
**Concurrent lines -** $\ge$ 3 lines intersect at a single point
-**Collinear points -** $\ge$ 3 points lie on the same line
+**Collinear points -** $\ge$ 3 points lie on the same line ($\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB}$ where $\lambda + \mu = 1$. If $C$ is between $\vec{AB}$, then $0 \lt \mu \lt 1$)
Useful vector properties:
- Two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b}=0$
- $\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$
+## Linear dependence
+
+Vectors $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent if they are non-parallel and:
+
+$$k\vec{a}+l\vec{b}+m\vec{c} = 0$$
+$$\therefore \vec{c} = m\vec{a} + n\vec{b} \quad \text{(simultaneous)}$$
+
+$\vec{a}, \vec{b},$ and $\vec{c}$ are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel.
+
+Vector $\vec{w}$ is a linear combination of vectors $\vec{v_1}, \vec{v_2}, \vec{v_3}$
+
+## Three-dimensional vectors
+
+Right-hand rule for axes - $z$ is up or out of page.
+
+## Angle between vector and axis
+
+Direction of a vector can be given by the angles it makes with $\vec{i}, \vec{j}, \vec{k}$ directions.
+For $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ which makes angles $\alpha, \beta, \gamma$ with positive direction of $x, y, z$ axes:
+$$\cos \alpha = {a_1 \over |\vec{a}|}, \quad \cos \beta = {a_2 \over |\vec{a}|}, \quad \cos \gamma = {a_3 \over |\vec{a}|}$$
+**on CAS:** `angle([a b c], [1 0 0])` for angle between $a\vec{i} + b\vec{j} + c\vec{k}$ and $x$-axis