[methods] normal distributions on CAS
[notes.git] / spec / spec-collated.tex
index 39ab74ecb586908cb18c2851ac08382cc756a136..63d724dd94af056e9530db74371218f8dc936883 100644 (file)
@@ -12,6 +12,7 @@
 \usepackage{graphicx}
 \usepackage{wrapfig}
 \usepackage{tikz}
+\usepackage{tkz-fct}
 \usepackage{tikz-3dplot}
 \usepackage{pgfplots}
 \usetikzlibrary{calc}
                   \begin{tikzpicture}
                     \begin{axis}[yticklabel style={yshift=1.0pt, anchor=north east},x=0.1cm, y=1cm, ymax=2, ymin=-2, xticklabels={}, ytick={-1.5708,1.5708},yticklabels={\(-\frac{\pi}{2}\),\(\frac{\pi}{2}\)}]
                       \addplot[color=orange, smooth] gnuplot [domain=-35:35, unbounded coords=jump,samples=350] {atan(x)} node [pos=0.5, above left] {\(\tan^{-1}x\)};
-                      \addplot[->, gray, dotted, thick, domain=-35:35] {1.5708};
-                      \addplot[->, gray, dotted, thick, domain=-35:35] {-1.5708};
+                      \addplot[gray, dotted, thick, domain=-35:35] {1.5708} node [black, font=\footnotesize, below right, pos=0] {\(y=\frac{\pi}{2}\)};
+                      \addplot[gray, dotted, thick, domain=-35:35] {-1.5708} node [black, font=\footnotesize, above left, pos=1] {\(y=-\frac{\pi}{2}\)};
                     \end{axis}
                   \end{tikzpicture}
 \columnbreak
                       \rowcolor{shade2}
                       & \centering\(\dfrac{d^2 y}{dx^2} > 0\)  & \centering \(\dfrac{d^2y}{dx^2}<0\) & \(\dfrac{d^2y}{dx^2}=0\) (inflection) \\
                       \hline
-                      \(\frac{dy}{dx}>0\) &
+                      \(\dfrac{dy}{dx}>0\) &
                       \makecell{\\\begin{tikzpicture}\begin{axis}[xmin=-3,  xmax=0.8, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(e^(x))};  \addplot[red] {x/2.5+0.75}; \end{axis}\end{tikzpicture} \\Rising (concave up)}&
                         \makecell{\\\begin{tikzpicture}\begin{axis}[xmin=0.1, xmax=4,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(ln(x))};  \addplot[red] {x/1.5-0.56}; \end{axis}\end{tikzpicture} \\Rising (concave down)}&
                           \makecell{\\\begin{tikzpicture}\begin{axis}[xmin=-1.5,  xmax=1.5,   scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {x}; \end{axis}\end{tikzpicture} \\Rising inflection point}\\
 
                   \subsubsection*{Gradient at a point on parametric curve}
 
-                  \[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0\]
+                  \[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0 \text{ (chain rule)}\]
 
                   \[\frac{d^2}{dx^2} = \frac{d(y^\prime)}{dx} = {\frac{dy^\prime}{dt} \div {\frac{dx}{dt}}} \> \vert \> y^\prime = {\frac{dy}{dx}}\]
 
 
                   \[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
 
-                \end{multicols}
-              \end{document}
+              
+    \section{Kinematics \& Mechanics}
+
+      \subsection*{Constant acceleration}
+
+      \begin{itemize}
+        \item \textbf{Position} - relative to origin
+        \item \textbf{Displacement} - relative to starting point
+      \end{itemize}
+
+      \subsubsection*{Velocity-time graphs}
+
+      \begin{itemize}
+        \item Displacement: \textit{signed} area between graph and \(t\) axis
+        \item Distance travelled: \textit{total} area between graph and \(t\) axis
+      \end{itemize}
+
+      \[ \text{acceleration} = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right) \]
+
+        \begin{center}
+          \renewcommand{\arraystretch}{1}
+          \begin{tabular}{ l r }
+              \hline & no \\ \hline
+              \(v=u+at\) & \(x\) \\
+              \(v^2 = u^2+2as\) & \(t\) \\
+              \(s = \frac{1}{2} (v+u)t\) & \(a\) \\
+              \(s = ut + \frac{1}{2} at^2\) & \(v\) \\
+              \(s = vt- \frac{1}{2} at^2\) & \(u\) \\ \hline
+            \end{tabular}
+        \end{center}
+
+        \[ v_{\text{avg}} = \frac{\Delta\text{position}}{\Delta t} \]
+        \begin{align*}
+          \text{speed} &= |{\text{velocity}}| \\
+          &= \sqrt{v_x^2 + v_y^2 + v_z^2}
+        \end{align*}
+
+        \noindent \textbf{Distance travelled between \(t=a \rightarrow t=b\):}
+        \[= \int^b_a \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \cdot dt \]
+
+        \noindent \textbf{Shortest distance between \(\boldsymbol{r}(t_0)\) and \(\boldsymbol{r}(t_1)\):}
+        \[ = |\boldsymbol{r}(t_1) - \boldsymbol{r}(t_2)| \]
+
+      \subsection*{Vector functions}
+
+        \[ \boldsymbol{r}(t) = x \boldsymbol{i} + y \boldsymbol{j} + z \boldsymbol{k} \]
+
+        \begin{itemize}
+          \item If \(\boldsymbol{r}(t) \equiv\) position with time, then the graph of endpoints of \(\boldsymbol{r}(t) \equiv\) Cartesian path
+          \item Domain of \(\boldsymbol{r}(t)\) is the range of \(x(t)\)
+          \item Range of \(\boldsymbol{r}(t)\) is the range of \(y(t)\)
+        \end{itemize}
+
+      \subsection*{Vector calculus}
+
+      \subsubsection*{Derivative}
+
+        Let \(\boldsymbol{r}(t)=x(t)\boldsymbol{i} + y(t)\boldsymbol(j)\). If both \(x(t)\) and \(y(t)\) are differentiable, then:
+        \[ \boldsymbol{r}(t)=x(t)\boldsymbol{i}+y(t)\boldsymbol{j} \]
+
+  \end{multicols}
+\end{document}