[spec] transfer notes on complex plots
[notes.git] / spec / spec-collated.tex
index df785b170a1efb2e2aee1fd906de6a36b2eb6151..72544ce67b07af595aa53677ba971bd98b9218e2 100644 (file)
@@ -4,12 +4,22 @@
 \usepackage{amsmath}
 \usepackage{amssymb}
 \usepackage{harpoon}
+\usepackage{tabularx}
 \usepackage{graphicx}
 \usepackage{wrapfig}
+\usepackage{tikz}
 \usepackage{fancyhdr}
 \pagestyle{fancy}
 \fancyhead[LO,LE]{Year 12 Specialist}
 \fancyhead[CO,CE]{Andrew Lorimer}
+
+\usepackage{mathtools}
+\usepackage{xcolor} % used only to show the phantomed stuff
+\renewcommand\hphantom[1]{{\color[gray]{.6}#1}} % comment out!
+\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
+\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
+\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
+
 \begin{document}
 
 \begin{multicols}{2}
         & \qquad \text{(rationalise denominator)}
       \end{align*}
 
+    \subsection*{Argand planes}
+
+      \begin{tikzpicture}\begin{scope}[thick,font=\scriptsize]
+        \draw [->] (-1.5,0) -- (1.5,0) node [above left]  {$\operatorname{Re}(z)$};
+        \draw [->] (0,-1.5) -- (0,1.5) node [below right] {$\operatorname{Im}(z)$};
+
+        % If you only want a single label per axis side:
+        \draw (1,-3pt) -- (1,0pt)   node [below] {$1$};
+        \draw (-1,-3pt) -- (-1,0pt) node [below] {$-1$};
+        \draw (-3pt,1) -- (0pt,1)   node [left] {$i$};
+        \draw (-3pt,-1) -- (0pt,-1) node [left] {$-i$};
+      \end{scope}\end{tikzpicture}
+
+      Multiplication by \(i \implies\) anticlockwise rotation of \(\frac{\pi}{2}\)
+
+    \subsection*{de Moivres' theorem}
+
+    \[(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\]
+
+    \subsection*{Complex polynomials}
+    
+      Include \(\pm\) for all solutions, incl. imaginary
+
+\newcolumntype{R}{>{\raggedleft\arraybackslash}X}
+\newcolumntype{L}{>{\raggedright\arraybackslash}X}
+      \begin{tabularx}{\columnwidth}{rX}
+        \hline
+        Sum of squares & \(\begin{aligned} 
+        z^2 + a^2 &= z^2-(ai)^2\\
+        &= (z+ai)(z-ai) \end{aligned}\) \\
+        \hline
+        Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\
+        \hline
+        Division & \(P(z)=D(z)Q(z)+R(z)\) \\
+        \hline
+        \parbox[t]{2cm}{Remainder} & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\
+        \hline
+\end{tabularx}
+
+\subsection*{Roots}
+
+\(n\)th roots of \(z=r\operatorname{cis}\theta\) are:
+
+\[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\]
+
+\begin{itemize}
+
+  \item{Same modulus for all solutions}
+  \item{Arguments are separated by \(\frac{2\pi}{n}\)}
+
+\item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\)}
+\end{itemize}
+
+\subsubsection*{Conjugate root theorem}
+
+If \(a+bi\) is a solution to \(P(z)=0\), then the conjugate \(\overline{z}=a-bi\) is also a solution.
+
 \end{multicols}
 \end{document}