\usepackage{pgfplots}
\usepackage{pst-plot}
\usepackage{rotating}
+%\usepackage{showframe} % debugging only
\usepackage{subfiles}
\usepackage{tabularx}
\usepackage{tcolorbox}
\addplot[gray, dotted, thick, domain=-35:35] {-1.5708} node [black, font=\footnotesize, above left, pos=1] {\(y=-\frac{\pi}{2}\)};
\end{axis}
\end{tikzpicture}
-\columnbreak
+
+ \subsection*{Mensuration}
+
+ \begin{tikzpicture}[draw=blue!70,thick]
+ \filldraw[fill=lblue] circle (2cm);
+ \filldraw[fill=white]
+ (320:2cm) node[right] {}
+ -- (220:2cm) node[left] {}
+ arc[start angle=220, end angle=320, radius=2cm]
+ -- cycle;
+ \node {Major Segment};
+ \node at (-90:2) {Minor Segment};
+
+ \begin{scope}[xshift=4.5cm]
+ \draw circle (2cm);
+ \filldraw[fill=lblue]
+ (320:2cm) node[right] {}
+ -- (0,0) node[above] {}
+ -- (220:2cm) node[left] {}
+ arc[start angle=220, end angle=320, radius=2cm]
+ -- cycle;
+ \node at (90:1cm) {Major Sector};
+ \node at (-90:1.5) {Minor Sector};
+ \end{scope}
+ \end{tikzpicture}
+
+ \subsubsection*{Sectors}
+
+ \begin{align*}
+ A &= \pi r^2 \dfrac{\theta}{2\pi} \\
+ &= \dfrac{r^2 \theta}{2}
+ \end{align*}
+
+ \subsubsection*{Segments}
+
+ \[ A = \dfrac{r^2}{2} \left( \theta = \sin \theta \right) \]
+
+ \subsubsection*{Chords}
+
+ \begin{align*}
+ \operatorname{crd} \theta &= \sqrt{(1 - \cos\theta)^2 + \sin^2 \theta} \\
+ &= \sqrt{2 - 2\cos\theta} \\
+ &= 2 \sin \left(\dfrac{\theta}{2}\right)
+ \end{align*}
+
\section{Differential calculus}
\[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
To reverse, use \texttt{combine(...)}
\end{cas}
+ \subsection*{Integrating \(\boldsymbol{\dfrac{dy}{dx} = g(y)}\)}
+
+ \[ \text{if } \dfrac{dy}{dx} = g(y), \text{ then } x = \int{\dfrac{1}{g(y)}} \> dy \]
+
\subsection*{Graphing integrals on CAS}
\begin{cas}
\subsection*{Euler's method}
- \[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]
+ \[\dfrac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]
\[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
+ \begin{theorembox}{}
+ If \(\dfrac{dy}{dx} = g(x)\) with \(x_0 = a\) and \(y_0 = b\), then:
+ \begin{align*}
+ x_{n+1} &= x_n + h \\
+ y_{n+1} &= y_n + hg(x_n)
+ \end{align*}
+ \end{theorembox}
+
+
+
\include{calculus-rules}
\section{Kinematics \& Mechanics}
\end{align*}
\noindent \textbf{Distance travelled between \(t=a \rightarrow t=b\):}
- \[= \int^b_a \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \cdot dt \]
+ \begin{align*}
+ &= \int^{b}_{a}{\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}} \> dt \tag{2D} \\
+ &= \int^{t=b}_{t=a}{\dfrac{dx}{dt}} \> dt \tag{linear}
+ \end{align*}
\noindent \textbf{Shortest distance between \(\boldsymbol{r}(t_0)\) and \(\boldsymbol{r}(t_1)\):}
\[ = |\boldsymbol{r}(t_1) - \boldsymbol{r}(t_2)| \]