update practice exam spreadsheet
[notes.git] / spec / spec-collated.tex
index 06cb97454a4eb7d37b40de70704bc1a950c0cbaa..225cc8c01920230b2558af383d7d7304c9612027 100644 (file)
@@ -23,6 +23,7 @@
 \usepackage{pgfplots}
 \usepackage{pst-plot}
 \usepackage{rotating}
+%\usepackage{showframe} % debugging only
 \usepackage{subfiles}
 \usepackage{tabularx}
 \usepackage{tcolorbox}
                       \addplot[gray, dotted, thick, domain=-35:35] {-1.5708} node [black, font=\footnotesize, above left, pos=1] {\(y=-\frac{\pi}{2}\)};
                     \end{axis}
                   \end{tikzpicture}
-\columnbreak
+
+                  \subsection*{Mensuration}
+
+                  \begin{tikzpicture}[draw=blue!70,thick]
+                    \filldraw[fill=lblue] circle (2cm);
+                    \filldraw[fill=white] 
+                    (320:2cm) node[right] {} 
+                    -- (220:2cm) node[left] {} 
+                    arc[start angle=220, end angle=320, radius=2cm] 
+                    -- cycle;
+                    \node {Major Segment};
+                    \node at (-90:2) {Minor Segment};
+
+                    \begin{scope}[xshift=4.5cm]
+                      \draw circle (2cm);
+                      \filldraw[fill=lblue] 
+                      (320:2cm) node[right] {}
+                      -- (0,0) node[above] {}
+                      -- (220:2cm) node[left] {} 
+                      arc[start angle=220, end angle=320, radius=2cm]
+                      -- cycle;
+                      \node at (90:1cm) {Major Sector};
+                      \node at (-90:1.5) {Minor Sector};
+                    \end{scope}
+                  \end{tikzpicture}
+
+                  \subsubsection*{Sectors}
+
+                  \begin{align*}
+                    A &= \pi r^2 \dfrac{\theta}{2\pi} \\
+                    &= \dfrac{r^2 \theta}{2}
+                  \end{align*}
+
+                  \subsubsection*{Segments}
+
+                  \[ A = \dfrac{r^2}{2} \left( \theta = \sin \theta \right) \]
+
+                  \subsubsection*{Chords}
+
+                  \begin{align*}
+                    \operatorname{crd} \theta &= \sqrt{(1 - \cos\theta)^2 + \sin^2 \theta} \\
+                    &= \sqrt{2 - 2\cos\theta} \\
+                    &= 2 \sin \left(\dfrac{\theta}{2}\right)
+                  \end{align*}
+
                   \section{Differential calculus}
 
                   \[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
                     To reverse, use \texttt{combine(...)}
                   \end{cas}
 
+                  \subsection*{Integrating \(\boldsymbol{\dfrac{dy}{dx} = g(y)}\)}
+
+                  \[ \text{if } \dfrac{dy}{dx} = g(y), \text{ then } x = \int{\dfrac{1}{g(y)}} \> dy \]
+
                   \subsection*{Graphing integrals on CAS}
 
                   \begin{cas}
 
                   \subsection*{Euler's method}
 
-                  \[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]
+                  \[\dfrac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]
 
                   \[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
 
+                  \begin{theorembox}{}
+                    If \(\dfrac{dy}{dx} = g(x)\) with \(x_0 = a\) and \(y_0 = b\), then:
+                    \begin{align*}
+                      x_{n+1} &= x_n + h \\
+                      y_{n+1} &= y_n + hg(x_n)
+                    \end{align*}
+                  \end{theorembox}
+
+
+
                   \include{calculus-rules}
 
     \section{Kinematics \& Mechanics}
         \end{align*}
 
         \noindent \textbf{Distance travelled between \(t=a \rightarrow t=b\):}
-        \[= \int^b_a \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \cdot dt \]
+        \begin{align*}
+          &= \int^{b}_{a}{\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}} \> dt \tag{2D} \\
+          &= \int^{t=b}_{t=a}{\dfrac{dx}{dt}} \> dt \tag{linear}
+        \end{align*}
 
         \noindent \textbf{Shortest distance between \(\boldsymbol{r}(t_0)\) and \(\boldsymbol{r}(t_1)\):}
         \[ = |\boldsymbol{r}(t_1) - \boldsymbol{r}(t_2)| \]