[methods] start inverse functions
[notes.git] / methods / stuff.md
index 93354091686509a8c414097a53e15cc572cd76f6..2055b63a7d86e0fb419e1f9b851304547ead4d5b 100644 (file)
-# Index laws
+---
+geometry: margin=1.5cm
+<!-- columns: 2 -->
+graphics: yes
+tables: yes
+author: Andrew Lorimer
+classoption: twocolumn
+header-includes: \pagenumbering{gobble}
+---
 
-$a^m \times a^n = a^{m+n}$  
-$a^m \div a^n = a^{m-n}4$  
-$(a^m)^n = a^{_mn}$  
-$(ab)^m = a^m b^m$  
-${({a \over b})}^m = {a^m \over b^m}$
+# Exponential and Index Functions
 
-# Fractional indices
+## Index laws
 
-$^n\sqrt{x}=x^{1/n}$
\ No newline at end of file
+\begin{equation}\begin{split}
+  a^m \times a^n & = a^{m+n} \\
+  a^m \div a^n & = a^{m-n}4 \\
+  (a^m)^n & = a^{_mn} \\
+  (ab)^m & = a^m b^m \\
+  {({a \over b})}^m & = {a^m \over b^m}
+\end{split}\end{equation}
+
+## Fractional indices
+
+$$^n\sqrt{x}=x^{1/n}$$
+
+## Logarithms
+
+$$\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x$$
+
+## Using logs to solve index eq's
+
+Used for equations without common base exponent
+
+Or change base:  
+$$\log_b c = {{\log_a c} \over {\log_a b}}$$
+
+If $a<1, \quad \log_{b} a < 0$ (flip inequality operator)
+
+## Exponential functions
+
+$e^x$ - natural exponential function
+
+$$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
+
+## Logarithm laws
+
+\begin{equation}\begin{split}
+  \log_a(mn) & = \log_am + \log_an \\
+  \log_a({m \over n}) & = \log_am - \log_a \\
+  \log_a(m^p) & = p\log_am \\
+  \log_a(m^{-1}) & = -\log_am \\
+  \log_a1 = 0 & \text{ and } \log_aa = 1
+\end{split}\end{equation}
+
+
+## Inverse functions
+
+For $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a^x$, inverse is:
+
+$$f^{-1}: \mathbb{R}^+ \rightarrow \mathbb{R}, f^{-1}=log_ax$$
+
+## Euler's number
+
+$$e= \lim_{n \rightarrow \infty} (1 + {1 \over n})^n$$
+
+## Exponential and logarithmic modelling
+
+$$A = A_0 e^{kt}$$
+
+where  
+$A_0$ is initial value  
+$t$ is time taken  
+$k$ is a constant  
+For continuous growth, $k > 0$  
+For continuous decay, $k < 0$
+
+## Graphing exponential functions
+
+$$f(x)=Aa^{k(x-b)} + c, \quad \vert \> a > 1$$
+
+- **$y$-intercept** at $(0, A \cdot a^{-kb}+c)$ as $x \rightarrow \infty$
+- **horizontal asymptote** at $y=c$
+- **domain** is $\mathbb{R}$
+- **range** is $(c, \infty)$
+- dilation of factor $A$ from $x$-axis
+- dilation of factor $1 \over k$ from $y$-axis
+
+![](graphics/exponential-graphs.png){#id .class width=30%} 
+
+## Graphing logarithmic functions
+
+$\log_e x$ is the inverse of $e^x$ (reflection across $y=x$)
+
+$$f(x)=A \log_a k(x-b) + c$$
+
+where
+
+- **domain** is $(b, \infty)$
+- **range** is $\mathbb{R}$
+- **vertical asymptote** at $x=b$
+- $y$-intercept exists if $b<0$
+- dilation of factor $A$ from $x$-axis
+- dilation of factor $1 \over k$ from $y$-axis
+
+![](graphics/log-graphs.png){#id .class width=30%} 
+
+## Finding equations
+
+Solve simultaneous equations on CAS: ![](graphics/cas-simultaneous.png){#id .class width=75px}