update practice exams
[notes.git] / spec / statistics.tex
index d7e772321995d2f0757d5872269c7a9ddde2a420..bc64a9807a62a8c9c24a221623bb197cd7aca407 100644 (file)
 
   \begin{cas}
   
-    \begin{itemize}
-      \item Spreadsheet \(\rightarrow\) Catalog \(\rightarrow\) \verb;randNorm(sd, mean, n); where \verb;n; is the number of samples. Show histogram with Histogram key in top left
-      \item To calculate parameters of a dataset: Calc \(\rightarrow\) One-variable
-    \end{itemize}
+    \hspace{1em} Spreadsheet \(\rightarrow\) Catalog \(\rightarrow\) \verb;randNorm(sd, mean, n); \\
+    where \verb;n; is the number of samples. Show histogram with Histogram key in top left.
+
+    To calculate parameters of a dataset: \\
+    \-\hspace{1em}Calc \(\rightarrow\) One-variable
 
   \end{cas}
   
     Always express \(z\) as +ve. Express confidence \textit{interval} as ordered pair.
   \end{warning}
 
-\pgfmathdeclarefunction{gauss}{2}{%
-  \pgfmathparse{1/(#2*sqrt(2*pi))*exp(-((x-#1)^2)/(2*#2^2))}%
-}
-                  \pgfplotsset{every axis/.append style={
-                    axis x line=middle,    % put the x axis in the middle
-                    axis y line=middle,    % put the y axis in the middle
-                  }} \pgfkeys{/pgf/decoration/.cd,
-      distance/.initial=10pt
-}  \pgfdeclaredecoration{add dim}{final}{
-\state{final}{% 
-\pgfmathsetmacro{\dist}{5pt*\pgfkeysvalueof{/pgf/decoration/distance}/abs(\pgfkeysvalueof{/pgf/decoration/distance})}    
-          \pgfpathmoveto{\pgfpoint{0pt}{0pt}}             
-          \pgfpathlineto{\pgfpoint{0pt}{2*\dist}}   
-          \pgfpathmoveto{\pgfpoint{\pgfdecoratedpathlength}{0pt}} 
-          \pgfpathlineto{\pgfpoint{(\pgfdecoratedpathlength}{2*\dist}}     
-          \pgfsetarrowsstart{latex}
-          \pgfsetarrowsend{latex}
-          \pgfpathmoveto{\pgfpoint{0pt}{\dist}}
-          \pgfpathlineto{\pgfpoint{\pgfdecoratedpathlength}{\dist}} 
-          \pgfusepath{stroke} 
-          \pgfpathmoveto{\pgfpoint{0pt}{0pt}}
-          \pgfpathlineto{\pgfpoint{\pgfdecoratedpathlength}{0pt}}
-}}
-\tikzset{dim/.style args={#1,#2}{decoration={add dim,distance=#2},
-                decorate,
-                postaction={decorate,decoration={text along path,
-                                                 raise=#2,
-                                                 text align={align=center},
-                                                 text={#1}}}}}
-                  \begin{figure*}[hb]
-                    \centering
-                    {\begin{center} \begin{tikzpicture}
-  \pgfplotsset{set layers, axis x line=middle, axis y line=middle}
-\begin{axis}[every axis plot post/.append style={
-  mark=none,domain=-3:3,samples=50,smooth}, 
-  axis x line=bottom, 
-  axis y line=left,
-  enlargelimits=upper,
-  x=\textwidth/10,
-  ytick={0.55},
-  yticklabels={\(\frac{1}{\sigma \sqrt{2\pi}}\)}, 
-  xtick={-2,-1,0,1,2},
-  x tick label style = {font=\footnotesize},
-  xticklabels={\((\mu-2\sigma)\), \((\mu-\sigma)\), \(\mu\), \((\mu+\sigma)\), \((\mu+2\sigma)\)},
-  xlabel={\(x\)},
-  every axis x label/.style={at={(current axis.right of origin)},anchor=north west},
-  every axis y label/.style={at={(axis description cs:-0.02,0.2)}, anchor=south west, rotate=90},
-  ylabel={\(\Pr(X=x)\)}]
-  \addplot {gauss(0,0.75)};
-\fill[red!30] (-3,0)  -- plot[id=f3,domain=-3:3,samples=50]
-        function {1/(0.75*sqrt(2*pi))*exp(-((x)^2)/(2*0.75^2))} -- (3,0) -- cycle;
-  \fill[darkgray!30] (3,0)  -- plot[id=f3,domain=-3:3,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (3,0) -- cycle;
-  \fill[lightgray!30] (-2,0)  -- plot[id=f3,domain=-2:2,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (2,0) -- cycle;
-  \fill[white!30] (-1,0)  -- plot[id=f3,domain=-1:1,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (1,0) -- cycle;
-  \begin{scope}[<->]
-    \draw (-1,0.35) -- (1,0.35) node [midway, fill=white] {68.3\%};
-    \draw (-2,0.25) -- (2,0.25) node [midway, fill=white] {95.5\%};
-    \draw (-3,0.15) -- (3,0.15) node [midway, fill=white] {99.7\%};
-  \end{scope}
-  \begin{scope}[-, dashed, gray]
-    \draw (-1,0) -- (-1, 0.35);
-    \draw (1,0) -- (1, 0.35);
-    \draw (-2,0) -- (-2, 0.25);
-    \draw (2,0) -- (2, 0.25);
-    \draw (-3,0) -- (-3, 0.15);
-    \draw (3,0) -- (3, 0.15);
-  \end{scope}
-\end{axis}
-\begin{axis}[every axis plot post/.append style={
-  mark=none,domain=-3:3,samples=50,smooth}, 
-  axis x line=bottom, 
-  enlargelimits=upper,
-  x=\textwidth/10,
-  xtick={-2,-1,0,1,2},
-  axis x line shift=30pt,
-  hide y axis,
-  x tick label style = {font=\footnotesize},
-  xlabel={\(Z\)},
-  every axis x label/.style={at={(axis description cs:1,-0.25)},anchor=south west}]
-  \addplot {gauss(0,0.75)};
-\end{axis}
-\end{tikzpicture}\end{center}}
-                  \end{figure*}
+  \begin{figure*}[hb]
+    \centering
+    \include{normal-dist-graph}
+  \end{figure*}
 
   \subsection*{Central limit theorem}
 
-  If \(X\) is randomly distributed with mean \(\mu\) and sd \(\sigma\), then with an adequate sample size \(n\) the distribution of the sample mean \(\overline{X}\) is approximately normal with mean \(E(\overline{X})\) and \(\operatorname{sd}(\overline{X}) = \frac{\sigma}{\sqrt{n}}\).
+  \begin{theorembox}{}
+    If \(X\) is randomly distributed with mean \(\mu\) and sd \(\sigma\), then with an adequate sample size \(n\) the distribution of the sample mean \(\overline{X}\) is approximately normal with mean \(E(\overline{X})\) and \(\operatorname{sd}(\overline{X}) = \frac{\sigma}{\sqrt{n}}\).
+  \end{theorembox}
 
   \subsection*{Confidence intervals}
 
     Note hypotheses are always expressed in terms of population parameters
   \end{warning}
 
-  \subsection*{Null hypothesis \(H_0\)}
+  \subsection*{Null hypothesis \(\textbf{H}_0\)}
 
   Sample drawn from population has same mean as control population, and any difference can be explained by sample variations.
 
-  \subsection*{Alternative hypothesis \(H_1\)}
+  \subsection*{Alternative hypothesis \(\textbf{H}_1\)}
 
   Amount of variation from control is significant, despite standard sample variations.
 
   \subsection*{\(p\)-value}
 
+  Probability of observing a value of the sample statistic as significant as the one observed, assuming null hypothesis is true.
 
+  For one-tail tests:
   \begin{align*}
-    p &= \Pr(\overline{X} \lessgtr \mu(H_1)) \\
-    &= 2 \cdot \Pr(\overline{X} <> \mu(H_1) | \mu = 8)
+    p\text{-value} &= \Pr\left( \> \overline{X} \lessgtr \mu(\textbf{H}_1) \> \given \> \mu = \mu(\textbf{H}_0)\> \right) \\
+    &= \Pr\left( Z \lessgtr \dfrac{\left( \mu(\textbf{H}_1) - \mu(\textbf{H}_0) \right) \cdot \sqrt{n} }{\operatorname{sd}(X)} \right) \\
+    &\text{then use \texttt{normCdf} with std. norm.}
   \end{align*}
 
-  Probability of observing a value of the sample statistic as significant as the one observed, assuming null hypothesis is true.
-
   \vspace{0.5em}
   \begin{tabularx}{23em}{|l|X|}
     \hline
     \rowcolor{cas}
     \(\boldsymbol{p}\) & \textbf{Conclusion} \\
     \hline
-    \(> 0.05\) & insufficient evidence against \(H_0\) \\
-    \(< 0.05\) (5\%) & good evidence against \(H_0\) \\
-    \(< 0.01\) (1\%) & strong evidence against \(H_0\) \\
-    \(< 0.001\) (0.1\%) & very strong evidence against \(H_0\) \\
+    \(> 0.05\) & insufficient evidence against \(\textbf{H}_0\) \\
+    \(< 0.05\) (5\%) & good evidence against \(\textbf{H}_0\) \\
+    \(< 0.01\) (1\%) & strong evidence against \(\textbf{H}_0\) \\
+    \(< 0.001\) (0.1\%) & very strong evidence against \(\textbf{H}_0\) \\
     \hline
   \end{tabularx}
 
-  \subsection*{Statistical significance}
+  \subsubsection*{Finding \(n\) for a given \(p\)-value}
+
+  Find \(c\) such that \(\Pr(Z \lessgtr c)\) such that \(c = \alpha\) (use \texttt{invNormCdf} on CAS).
 
-  Significance level is denoted by \(\alpha\).
+  \subsection*{Significance level \(\alpha\)}
+
+  The condition for rejecting the null hypothesis.
 
   \-\hspace{1em} If \(p<\alpha\), null hypothesis is \textbf{rejected} \\
   \-\hspace{1em} If \(p>\alpha\), null hypothesis is \textbf{accepted}
   Menu \(\rightarrow\) Statistics \(\rightarrow\) Calc \(\rightarrow\) Test. \\
   Select \textit{One-Sample Z-Test} and \textit{Variable}, then input:
     \begin{description}[nosep, style=multiline, labelindent=0.5cm, leftmargin=2cm, font=\normalfont]
-    \item[\(\mu\) cond:] same operator as \(H_1\)
+    \item[\(\mu\) cond:] same operator as \(\textbf{H}_1\)
     \item[\(\mu_0\):] expected sample mean (null hypothesis)
     \item[\(\sigma\):] standard deviation (null hypothesis)
     \item[\(\overline{x}\):] sample mean
   \end{cas}
 
   \subsection*{One-tail and two-tail tests}
+  
+  \[ p\text{-value (two-tail)} = 2 \times p\text{-value (one-tail)} \]
 
   \subsubsection*{One tail}
 
   \begin{itemize}
     \item \(\mu\) has changed in one direction
-    \item State ``\(H_1: \mu \lessgtr \) known population mean''
+    \item State ``\(\textbf{H}_1: \mu \lessgtr \) known population mean''
   \end{itemize}
 
   \subsubsection*{Two tail}
 
   \begin{itemize}
     \item Direction of \(\Delta \mu\) is ambiguous
-    \item State ``\(H_1: \mu \ne\) known population mean''
+    \item State ``\(\textbf{H}_1: \mu \ne\) known population mean''
   \end{itemize}
 
-  For two tail tests:
   \begin{align*}
     p\text{-value} &= \Pr(|\overline{X} - \mu| \ge |\overline{x}_0 - \mu|) \\
-    &= \left( |Z| \ge \left|\dfrac{\overline{x}_0 - \mu}{\sigma \div \sqrt{n}} \right| \right)
+    &= \left( |Z| \ge \left|\dfrac{\overline{x}_0 - \mu}{\sigma \div \sqrt{n}} \right| \right) \\
   \end{align*}
 
+  where
+  \begin{description}[nosep, labelindent=0.5cm]
+    \item [\(\mu\)] is the population mean under \(\textbf{H}_0\)
+    \item [\(\overline{x}_0\)] is the observed sample mean
+    \item [\(\sigma\)] is the population s.d.
+    \item [\(n\)] is the sample size
+  \end{description}
+
   \subsection*{Modulus notation for two tail}
 
   \(\Pr(|\overline{X} - \mu| \ge a) \implies\) ``the probability that the distance between \(\overline{\mu}\) and \(\mu\) is \(\ge a\)''
   \subsection*{Errors}
 
   \begin{description}[labelwidth=2.5cm, labelindent=0.5cm]
-    \item [Type I error] \(H_0\) is rejected when it is \textbf{true}
-    \item [Type II error] \(H_0\) is \textbf{not} rejected when it is \textbf{false}
+    \item [Type I error] \(\textbf{H}_0\) is rejected when it is \textbf{true}
+    \item [Type II error] \(\textbf{H}_0\) is \textbf{not} rejected when it is \textbf{false}
   \end{description}
 
+  \begin{tabularx}{\columnwidth}{|X|l|l|}
+    \rowcolor{cas}\hline
+    \cellcolor{white}&\multicolumn{2}{c|}{\textbf{Actual result}} \\
+    \hline
+    \cellcolor{cas}\(\boldsymbol{z}\)\textbf{-test} & \cellcolor{light-gray}\(\textbf{H}_0\) true & \cellcolor{light-gray}\(\textbf{H}_0\) false \\
+    \hline
+    \cellcolor{light-gray}Reject \(\textbf{H}_0\) & Type I error & Correct \\
+    \hline
+    \cellcolor{light-gray}Do not reject \(\textbf{H}_0\) & Correct& Type II error \\
+    \hline
+  \end{tabularx}
+
 % \subsection*{Using c.i. to find \(p\)}
 % need more here