Asymptotes at $y=\pm {b \over a}(x-h)+k$
To make hyperbola up/down rather than left/right, swap $x$ and $y$
+$y^2-x^2=1$ produces hyperbola shifted 90 $^\circ$ (top and bottom of asymptotes)
+
## Parametric equations
Parametric curve:
$$x=f(t), \quad y=g(t)$$
$t$ is the parameter
+
+## Polar coordinates
+
+$$x = r\cos\theta, \quad y = r\sin\theta$$
+
+### Spirals
+$$r={\theta \over n\pi}$$
+- solve intercepts for multiples of $\pi \over 2$
+- or draw table of values for $r$ and $\theta$ for each $n\pi \over 2$
+
+### Circles
+$$r=a$$
+
+### Lines
+
+Horizontal: $r={n \over \sin \theta}$
+Vertical: $r={n \over \cos \theta}$
+
+### Solving polar graphs
+
+solve in terms of $r$
+
+e.g. $x=4$
+$r\cos\theta = 4$
+$r={4 \over \cos\theta}$
+
+e.g. $y=x^2$
+$r\sin\theta = r^2 \cos^2 \theta$
+$\sin \theta = r \cos^2 \theta$
+$r = {\sin \theta \over \cos^2\theta} = \tan\theta \sec\theta$
+
+e.g. $r=6\cos \theta\quad$ *(multiple by $r$)*
+$r^2=6r\cos\theta$
+$x^2+y^2=6x$
+complete the square
+
+## Other graphs
+
+### Cardioids
+
+$$
+
+### Roses