To find stationary points of a function, substitute $x$ value of given point into derivative. Solve for ${dy \over dx}=0$. Integrate to find original function.
-## Kinematics
-
-$${dV \over dt} = {\operatorname{change in volume} \over \operatorname{respect to time}}$$
-
-` |->--diff-->--| |-->--diff-->--|
-displacement velocity acceleration
- |--<-antidiff-<---| |--<-antidiff-<-|`
-
-**displacement $x$** - change in position
-**velocity $v$** - change in displacement
-**acceleration $a$** - change in velocity
-
-$$v_{\operatorname{avg}}={\Delta x \over \Delta t}={{x_2 - x_1} \over {t_2 - t_1}}$$
-$$\operatorname{speed}_{\operatorname{avg}}={\Delta v \over \Delta t}$$
-