Merge branch 'master' of ssh://charles/tank/andrew/school/notes
[notes.git] / spec / calculus.md
index ddd9011301d70a8d9681fdb5d0c0380ffc8143db..ddda40575b93fa94dbef141d5b1d2d8fda3a73ab 100644 (file)
@@ -1,3 +1,12 @@
+---
+geometry: margin=2cm
+columns: 2
+graphics: yes
+tables: yes
+author: Andrew Lorimer
+classoption: twocolumn
+---
+
 # Differential calculus
 
 ## Limits
@@ -95,12 +104,14 @@ $$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
 
 ## Chain rule for $(f\circ g)$
 
-$${dy \over dx} = {dy \over du} \cdot {du \over dx}$$
-$${d((ax+b)^n) \over dx} = {d(ax+b) \over dx} \cdot n \cdot (ax+b)^{n-1}$$
+If $f(x) = h(g(x)) = (h \circ g)(x)$:
 
-Function notation:
+$$f^\prime(x) = h^\prime(g(x)) \cdot g^\prime(x)$$
 
-$$(f\circ g)^\prime(x)=f^\prime(g(x))g^\prime(x),\quad \mathbb{where}\hspace{0.3em} (f\circ g)(x)=f(g(x))$$
+If $y=h(u)$ and $u=g(x)$:
+
+$${dy \over dx} = {dy \over du} \cdot {du \over dx}$$
+$${d((ax+b)^n) \over dx} = {d(ax+b) \over dx} \cdot n \cdot (ax+b)^{n-1}$$
 
 Used with only one expression.
 
@@ -110,9 +121,6 @@ ${du \over dx} = 2x$
 $y=u^7$  
 ${dy \over du} = 7u^6$  
 
-
-$7u^6 \times$
-
 ## Product rule for $y=uv$
 
 $${dy \over dx} = u{dv \over dx} + v{du \over dx}$$
@@ -135,12 +143,14 @@ Wikipedia:
 
 > the logarithm of a given number $x$ is the exponent to which another fixed number, the base $b$, must be raised, to produce that number $x$
 
-### Logarithmic identities  
+### Logarithmic identities
+
 $\log_b (xy)=\log_b x + \log_b y$  
 $\log_b x^n = n \log_b x$  
 $\log_b y^{x^n} = x^n \log_b y$
 
 ### Index identities
+
 $b^{m+n}=b^m \cdot b^n$  
 $(b^m)^n=b^{m \cdot n}$  
 $(b \cdot c)^n = b^n \cdot c^n$  
@@ -154,7 +164,7 @@ $$\ln x = \log_e x$$
 ### Differentiating logarithms
 $${d(\log_e x)\over dx} = x^{-1} = {1 \over x}$$
 
-## Solving $e^x$ etc
+## Derivative rules
 
 | $f(x)$ | $f^\prime(x)$ |xs
 | ------ | ------------- |
@@ -162,6 +172,7 @@ $${d(\log_e x)\over dx} = x^{-1} = {1 \over x}$$
 | $\sin ax$ | $a\cos ax$ |
 | $\cos x$ | $-\sin x$ |
 | $\cos ax$ | $-a \sin ax$ |
+| $\tan f(x)$ | $f^2(x) \sec^2f(x)$ |
 | $e^x$ | $e^x$ |
 | $e^{ax}$ | $ae^{ax}$ |
 | $ax^{nx}$ | $an \cdot e^{nx}$ |
@@ -169,16 +180,59 @@ $${d(\log_e x)\over dx} = x^{-1} = {1 \over x}$$
 | $\log_e {ax}$ | $1 \over x$ |
 | $\log_e f(x)$ | $f^\prime (x) \over f(x)$ |
 | $\sin(f(x))$ | $f^\prime(x) \cdot \cos(f(x))$ |
+| $\sin^{-1} x$ | $1 \over {\sqrt{1-x^2}}$ |
+| $\cos^{-1} x$ | $-1 \over {sqrt{1-x^2}}$ |
+| $\tan^{-1} x$ | $1 \over {1 + x^2}$ |
 
 <!-- $${d(ax^{nx}) \over dx} = an \cdot e^nx$$ -->
 
+Reciprocal derivatives:
+
+$${{dy \over dx} \over 1} = dx \over dy$$
+
+## Differentiating $x=f(y)$
+
+Find $dx \over dy$. Then $dx \over dy = {1 \over {dy \over dx}} \therefore {dy \over dx} = {1 \over {dx \over dy}}$.
+
+$${dy \over dx} = {1 \over {dx \over dy}}$$
+
+## Second derivative
+
+$$f(x) \implies f^\prime (x) \implies f^{\prime\prime}(x)$$
+
+$$\therefore y \implies {dy \over dx} \implies {d({dy \over dx}) \over dx} \implies {d^2 y \over dx^2}$$
+
+Order of polynomial $n$th derivative decrements each time the derivative is taken
+
+### Points of Inflection
+
+*Stationary point* - point of zero gradient (i.e. $f^\prime(x)=0$)  
+*Point of inflection* - point of maximum $|$gradient$|$ (i.e.  $f^{\prime\prime} = 0$)
+
+- if $f^\prime (a) = 0$ and $f^{\prime\prime}(a) > 0$, then point $(a, f(a))$ is a local min (curve is concave up)
+- if $f^\prime (a) = 0$ and $f^{\prime\prime} (a) < 0$, then point $(a, f(a))$ is local max (curve is concave down)
+- if $f^{\prime\prime}(a) = 0$, then point $(a, f(a))$ is a point of inflection
+- - if also $f^\prime(a)=0$, then it is a stationary point of inflection
+
+![](graphics/second-derivatives.png)
+
+## Implicit Differentiation
+
+On CAS: Action $\rightarrow$ Calculation $\rightarrow$ `impDiff(y^2+ax=5, x, y)`. Returns $y^\prime= \dots$.
+
+Used for differentiating circles etc.
+
+If $p$ and $q$ are expressions in $x$ and $y$ such that $p=q$, for all $x$ nd $y$, then:
+
+$${dp \over dx} = {dq \over dx} \quad \text{and} \quad {dp \over dy} = {dq \over dy}$$
+
 ## Antidifferentiation
 
 $$y={x^{n+1} \over n+1} + c$$
 
 ## Integration
 
-$$\int f(x) dx = F(x) + c$$
+$$\int f(x) dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)$$
 
 - area enclosed by curves
 - $+c$ should be shown on each step without $\int$
@@ -193,8 +247,10 @@ $\int k f(x) dx = k \int f(x) dx$
 | $f(x)$                          | $\int f(x) \cdot dx$         |
 | ------------------------------- | ---------------------------- |
 | $k$ (constant) | $kx + c$ |
-| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
+| $x^n$ | ${x^{n+1} \over {n+1}} + c$ |
 | $a x^{-n}$ | $a \cdot \log_e x + c$ |
+| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ |
+| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ |
 | $e^{kx}$ | ${1 \over k} e^{kx} + c$ |
 | $e^k$ | $e^kx + c$ |
 | $\sin kx$ | $-{1 \over k} \cos (kx) + c$ |
@@ -202,8 +258,10 @@ $\int k f(x) dx = k \int f(x) dx$
 | ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ |
 | $g^\prime(x)\cdot f^\prime(g(x)$ | $f(g(x))$ (chain rule)|
 | $f(x) \cdot g(x)$ | $\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx$ |
-| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ |
-| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ |
+
+### Definite integrals
+
+$$\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)_{}$$
 
 ## Applications of antidifferentiation
 
@@ -213,18 +271,24 @@ $\int k f(x) dx = k \int f(x) dx$
 
 To find stationary points of a function, substitute $x$ value of given point into derivative. Solve for ${dy \over dx}=0$. Integrate to find original function.
 
-## Kinematics
+## Rates
+
+### Related rates
+
+$${da \over db} \quad \text{change in } a \text{ with respect to } b$$
+
+#### Gradient at a point on parametric curve
+
+$${dy \over dx} = {{dy \over dt} \over {dx \over dt}} \> \vert \> {dx \over dt} \ne 0$$
 
-$${dV \over dt} = {\operatorname{change in volume} \over \operatorname{respect to time}}$$
+$${d^2 \over dx^2} = {d(y^\prime) \over dx} = {{dy^\prime \over dt} \over {dx \over dt}} \> \vert \> y^\prime = {dy \over dx}$$
 
-`     |->--diff-->--| |-->--diff-->--|
-displacement    velocity    acceleration
- |--<-antidiff-<---| |--<-antidiff-<-|`
+## Rational functions
 
-**displacement $x$** - change in position  
-**velocity $v$** - change in displacement  
-**acceleration $a$** - change in velocity
+$$f(x) = {P(x) \over Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}$$
 
-$$v_{\operatorname{avg}}={\Delta x \over \Delta t}={{x_2 - x_1} \over {t_2 - t_1}}$$
-$$\operatorname{speed}_{\operatorname{avg}}={\Delta v \over \Delta t}$$
+### Addition of ordinates
 
+- when two graphs have the same ordinate, $y$-coordinate is double the ordinate
+- when two graphs have opposite ordinates, $y$-coordinate is 0 i.e. ($x$-intercept)
+- when one of the ordinates is 0, the resulting ordinate is equal to the other ordinate