fractional power functions
[notes.git] / methods / transformations.md
index ce58a1082ff7c611c7a53335bc2a55332e952505..503257f1fcdabb10bf3260cd6606e189855a536a 100644 (file)
@@ -36,4 +36,24 @@ Functions must be written in form $y=Af[n(x+c)] + b$
 $A$ - dilation by factor $A$ from $x$-axis (if $A<0$, reflection across $y$-axis)  
 $n$ - dilation by factor $1 \over n$ from $y$-axis (if $n<0$, reflection across $x$-axis)  
 $c$ - translation from $y$-axis ($x$-shift)  
-$b$ - translation from $x$-axis ($y$-shift)
\ No newline at end of file
+$b$ - translation from $x$-axis ($y$-shift)
+
+## Power functions
+
+**Strictly increasing** on an interval where $x_2 > x_1 \implies f(x_2) > f(x_2)$ (including $x=0$)
+
+#### $n$ is odd and $n>1$:  
+$f(-x)=-f(x)$
+
+#### $n$ is even and $n>1$:
+$f(-x)=f(x)$
+
+### Function $f(x)=x^{-1 \over n}$ where $n \in \mathbb{Z}^+$
+
+Mostly only on CAS.
+
+We can write $x^{-1 \over n} = {1 \over {x^{1 \over n}}} = {1 \over ^n \sqrt{x}}$n. Domain is:  $\begin{cases} \mathbb{R} \setminus \{0\}\hspace{0.5em} \text{ if }n\text{ is odd} \\ \mathbb{R}^+ \hspace{2.6em}\text{if }n\text{ is even}\end{cases}$
+
+**Odd and even functions:**  
+Function is even if it can be reflected across $y$-axis $\implies f(x)=f(-x)$  
+If $n$ is odd, then $f$ is an odd function since $f(-x)=-f(x) \implies f(x)=-f(x)$
\ No newline at end of file