update cheatsheet from Neap 2017 exam
[notes.git] / physics / final.tex
index 57f04de7456fce6a0140ddc4e990ef732cdf8991..1db6640019b9d718215d93388e5e256d4307b714 100644 (file)
 
     $\Sigma F, a$ towards centre, $v$ tangential
 
-    $F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}$
+    $\Sigma F = F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}=T \sin \theta = mg \tan \theta$
 
     \includegraphics[height=4cm]{graphics/circ-forces.png}
 
 % -----------------------
   \subsection*{Vertical circular motion}
 
-    $T =$ tension, e.g. circular pendulum
+    $T =$ tension, e.g. circular pendulum
 
-    $T+mg = {{mv^2}\over r}$ at highest point
+    $T+mg = {{mv^2}\over r}, v = \sqrt{rg}$ (top)
 
-    $T-mg = {{mv^2} \over r}$ at lowest point
+    $T-mg = {{mv^2} \over r}, v = \sqrt{2rg}$ (bottom)
 
     $E_K_{\text{bottom}}=E_K_{\text{top}}+mgh$
 
       \item{Force-time: $A=\Delta \rho$}
       \item{Force-disp: $A=W$}
       \item{Force-ext: $m=k,\quad A=E_{spr}$}
-      \item{Force-dist: $A=\Delta \operatorname{gpe}$}
+      \item{$F_g$-dist: $A=\Delta \operatorname{gpe}$}
       \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
     \end{itemize}
 
       \item closer field lines means larger force
       \item dot: out of page, cross: into page
       \item +ve corresponds to N pole
+      \item Inv. sq. ${E_1 \over E_2} = ({r_2 \over r_1})^2$
     \end{itemize}
 
     \includegraphics[height=2cm]{graphics/field-lines.png}
   \subsection*{Power transmission}
 
     % \begin{align*}
-      \[V_{\operatorname{rms}}={V_{\operatorname{p\rightarrow p}}\over \sqrt{2}} \]
+      \[V_{\operatorname{rms}}={V_{\operatorname{p}}\over \sqrt{2}}={V_{\operatorname{p\rightarrow p}}\over {2 \sqrt{2}}} \]
       \[P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R} \]
       \[V_{\operatorname{loss}}=IR \]
     % \end{align*}
     \includegraphics[height=4cm]{graphics/dc-motor-2.png}
     \includegraphics[height=3cm]{graphics/ac-motor.png} \\
 
-    Force on current-carying wire, not copper \\
+    Force on I-carying wire, not Cu \\
     $F=0$ for front & back of coil (parallel) \\
     Any angle $> 0$ will produce force \\
 % \end{wrapfigure}
     % \(\Delta x\) = fringe spacing \\
     \(l\) = distance from source to observer\\
     \(d\) = separation between each wave source (e.g. slit) \(=S_1-S_2\)
-    \item diffraction $\propto {\lambda \over d}$
+    \item diffraction $\propto {\lambda \over d} \propto$ fringe spacing
+    \item $d(|\overrightarrow{S_1W}|-|\overrightarrow{S_2W}|)=d \Delta x = \lambda l$
     \item significant diffraction when ${\lambda \over \Delta x} \ge 1$
-    \item diffraction creates distortion (electron $>$ optical microscopes)
+    \item diffraction creates distortion (electron $\gt$ optical microscopes)
   \end{itemize}
 
 
   \subsection*{Refraction}
   \includegraphics[height=3.5cm]{graphics/refraction.png}
 
-  When a medium changes character, light is \emph{reflected}, \emph{absorbed}, and \emph{transmitted}
+  When a medium changes character, light is \emph{reflected}, \emph{absorbed}, and \emph{transmitted}. $\lambda$ changes, not $f$.
 
   angle of incidence $\theta_i =$ angle of reflection $\theta_r$
 
@@ -552,7 +554,9 @@ $f \cdot V$ & ${h \over q}$ & $f_0$ & $-\phi \over q$ &
 
   \subsection*{Uncertainty principle}
 
-  measuring location of an e- requires hitting it with a photon, but this causes $\rho$ to be transferred to electron, moving it.
+  $\Delta x \approx {\text{slit width} \over 2$}
+
+  measurement: $\rho$ transferred to e-\\ slit: possibility of diff. before slit
 
   \subsection*{Wave-particle duality}