$${dV \over dt} = {\operatorname{change in volume} \over \operatorname{respect to time}}$$
-**position $x$** - distance from origin or fixed point
-**displacement $s$** - change in position from starting point (vector)
-**velocity $v$** - change in position with respect to time
-**acceleration $a$** - change in velocity
-**speed** - magnitude of velocity
+**position $x$** - distance from origin or fixed point
+**displacement $s$** - change in position from starting point (vector)
+**velocity $v$** - change in position with respect to time
+**acceleration $a$** - change in velocity
+**speed** - magnitude of velocity
$$v_{\operatorname{avg}}={\Delta x \over \Delta t}={{x_2 - x_1} \over {t_2 - t_1}}$$
$$\operatorname{speed}_{\operatorname{avg}}={\Delta v \over \Delta t}$$
| $v=u+at$ | $s$ |
| $s=ut + {1 \over 2} at^2$ | $v$ |
| $v^2 = u^2 + 2as$ | $t$ |
-| $s= {1 \over 2}(u+v)t$ | $a$ |
\ No newline at end of file
+| $s= {1 \over 2}(u+v)t$ | $a$ |
+
+## Velocity-time graphs
+
+- area = displacement
+
+## Definite integrals
+
+$$\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)$$
\ No newline at end of file