Let $\alpha \in \mathbb{C}$. Remainder of $P(z) \div (z - \alpha)$ is $P(\alpha)$
+#### Factor theorem
+If $a+bi$ is a solution to $P(z)=0$, then:
+
+- $P(a+bi)=0$
+- $z-(a+bi)$ is a factor of $P(z)$
+
## Conjugate root theorem
If $a+bi$ is a solution to $P(z)=0$, with $a, b \in \mathbb{R}$, then the conjugate $\overline{z}=a-bi$ is also a solution.