[spec] reciprocal circular function identities
[notes.git] / methods / stuff.md
index addaf9b2a57959320e9d7f040c5471fb540c4e63..661a69f0ba46b88e71b1d8233bb8110fd71f980e 100644 (file)
@@ -1,4 +1,14 @@
-# random methods shit
+---
+geometry: margin=2cm
+<!-- columns: 2 -->
+graphics: yes
+tables: yes
+author: Andrew Lorimer
+classoption: twocolumn
+header-includes: \pagenumbering{gobble}
+---
+
+# Exponential and Index Functions
 
 ## Index laws
 
@@ -23,4 +33,42 @@ Used for equations without common base exponent
 Or change base:  
 $$\log_b c = {{\log_a c} \over {\log_a b}}$$
 
-If $a<1, \quad \log_{b} a < 0$ (flip inequality operator)
\ No newline at end of file
+If $a<1, \quad \log_{b} a < 0$ (flip inequality operator)
+
+## Exponential functions
+
+$e^x$ - natural exponential function
+
+
+$$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
+
+## Logarithm laws
+
+$\log_a(mn) = \log_am + \log_an$  
+$\log_a({m \over n}) = \log_am - \log_an$  
+$\log_a(m^p) = p\log_am$  
+$\log_a(m^{-1}) = -\log_am$  
+$\log_a1 = 0$ and $\log_aa = 1$
+
+## Inverse functions
+
+Inverse of $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a^x$ is $f^{-1}: \mathbb{R}^+ \rightarrow \mathbb{R}, f^{-1}=log_ax$
+
+## Euler's number
+
+$$e= \lim_{n \rightarrow \infty} (1 + {1 \over n})^n$$
+
+## Literal equations
+
+_Literal equation_ - no numerical solutions
+
+## Exponential and logarithmic modelling
+
+$$A = A_0 e^{kt}$$
+
+where  
+$A_0$ is initial value  
+$t$ is time taken  
+$k$ is a constant  
+For continuous growth, $k > 0$  
+For continuous decay, $k < 0$