### Dividing complex numbers
-$${{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}} \quad \text{multiplicative inverse}$$
-
-(using multiplicative inverse)
+$${{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}} \quad \text{(multiplicative inverse)}$$
In practice, rationalise denominator:
-${z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}$
+
+$${z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}$$
## Argand planes
Let $\alpha \in \mathbb{C}$. Remainder of $P(z) \div (z - \alpha)$ is $P(\alpha)$
+#### Factor theorem
+If $a+bi$ is a solution to $P(z)=0$, then:
+
+- $P(a+bi)=0$
+- $z-(a+bi)$ is a factor of $P(z)$
+
## Conjugate root theorem
If $a+bi$ is a solution to $P(z)=0$, with $a, b \in \mathbb{R}$, then the conjugate $\overline{z}=a-bi$ is also a solution.