[chem] progress on amino acid structural diagram
[notes.git] / methods / methods-collated.tex
index b853626a19fc5b180167e9e4869a8a7e859f7a34..b3b29d52f96feaab97b4bbcd2641a718ca93295b 100644 (file)
 \documentclass[a4paper]{article}
-\usepackage{standalone}
-\usepackage{newclude}
-\usepackage[a4paper,margin=2cm]{geometry}
-\usepackage{multicol}
-\usepackage{multirow}
+\usepackage[dvipsnames, table]{xcolor}
+\usepackage{adjustbox}
 \usepackage{amsmath}
 \usepackage{amssymb}
-\usepackage{harpoon}
-\usepackage{tabularx}
-\usepackage{makecell}
-\usepackage[dvipsnames, table]{xcolor}
 \usepackage{blindtext}
+\usepackage{dblfloatfix}
+\usepackage{enumitem}
+\usepackage{fancyhdr}
+\usepackage[a4paper,margin=2cm]{geometry}
 \usepackage{graphicx}
-\usepackage{wrapfig}
-\usepackage{tikz}
-\usepackage{tikz-3dplot}
-\usepackage{pgfplots}
-\pgfplotsset{compat=1.8}
+\usepackage{harpoon}
+\usepackage{listings}
+\usepackage{makecell}
+\usepackage{mathtools}
 \usepackage{mathtools}
-\usetikzlibrary{calc}
-\usetikzlibrary{angles}
-\usetikzlibrary{datavisualization.formats.functions}
-\usetikzlibrary{decorations.markings}
+\usepackage{multicol}
+\usepackage{multirow}
+\usepackage{newclude}
+\usepackage{pgfplots}
+\usepackage{pst-plot}
+\usepackage{standalone}
+\usepackage{subfiles}
+\usepackage{tabularx}
+\usepackage{tabu}
+\usepackage{tcolorbox}
+\usepackage{tikz-3dplot}
+\usepackage{tikz}
+\usepackage{tkz-fct}
+\usepackage[obeyspaces]{url}
+\usepackage{wrapfig}
+
+
+\usetikzlibrary{%
+  angles,
+  arrows,
+  arrows.meta,
+  calc,
+  datavisualization.formats.functions,
+  decorations,
+  decorations.markings,
+  decorations.text,
+  decorations.pathreplacing,
+  decorations.text,
+  scopes
+}
+
+\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
+
 \usepgflibrary{arrows.meta}
-\usepackage{longtable}
-\usepackage{fancyhdr}
+\pgfplotsset{compat=1.16}
+\pgfplotsset{every axis/.append style={
+  axis x line=middle,    % centre axes
+  axis y line=middle,
+  axis line style={->},  % arrows on axes
+  xlabel={$x$},          % axes labels
+  ylabel={$y$}
+}}
+
+\psset{dimen=monkey,fillstyle=solid,opacity=.5}
+\def\object{%
+    \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
+    \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
+    \rput{*0}{%
+        \psline{->}(0,-2)%
+        \uput[-90]{*0}(0,-2){$\vec{w}$}}
+}
+
 \pagestyle{fancy}
 \fancyhead[LO,LE]{Year 12 Methods}
 \fancyhead[CO,CE]{Andrew Lorimer}
+\fancypagestyle{plain}{\fancyhead[LO,LE]{} \fancyhead[CO,CE]{}} % rm title & author for first page
+
+\newcommand{\tg}{\mathop{\mathrm{tg}}}
+\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
+\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
+\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
+
 \providecommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
-\setlength{\parindent}{0cm}
-\usepackage{mathtools}
-\usepackage{xcolor} % used only to show the phantomed stuff
-\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
 \newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
 \newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
+\linespread{1.5}
+\setlength{\parindent}{0cm}
+\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
+
 \newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}
 \newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}
+\newcolumntype{Y}{>{\centering\arraybackslash}X}
+
 \definecolor{cas}{HTML}{e6f0fe}
-\definecolor{shade1}{HTML}{ffffff}
-\definecolor{shade2}{HTML}{e6f2ff}
-\definecolor{shade3}{HTML}{cce2ff}
-\linespread{1.5}
-\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
-\newcommand{\tg}{\mathop{\mathrm{tg}}}
-\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
-\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
-\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
-\pgfplotsset{every axis/.append style={
-  axis x line=middle,    % centre axes
-  axis y line=middle,
-  axis line style={->},  % arrows on axes
-  xlabel={$x$},          % axes labels
-  ylabel={$y$},
-}}
+\definecolor{important}{HTML}{fc9871}
+\definecolor{dark-gray}{gray}{0.2}
+\definecolor{peach}{HTML}{e6beb2}
+\definecolor{lblue}{HTML}{e5e9f0}
+
+\newtcolorbox{cas}{colframe=cas!75!black, title=On CAS, left*=3mm}
+\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=important, fontupper=\sffamily\bfseries}
+
+
 \begin{document}
 
-\title{\vspace{-2cm}\hrule\vspace{0.4cm} Year 12 Methods}
+\title{\vspace{-20mm}Year 12 Methods}
 \author{Andrew Lorimer}
 \date{}
 \maketitle
 
 \begin{multicols}{2}
 
+
 \section{Functions}
 
-\begin{itemize}
-  \tightlist
+\begin{itemize} \tightlist
   \item vertical line test
   \item each \(x\) value produces only one \(y\) value
 \end{itemize}
 
 \subsection*{One to one functions}
 
-\begin{itemize}
-\tightlist
-\item
-  \(f(x)\) is \emph{one to one} if \(f(a) \ne f(b)\) if
-  \(a, b \in \operatorname{dom}(f)\) and \(a \ne b\)\\
-  \(\implies\) unique \(y\) for each \(x\) (\(\sin x\) is not 1:1,
-  \(x^3\) is)
-\item
-  horizontal line test
-\item
-  if not one to one, it is many to one
+\begin{itemize} \tightlist
+  \item
+    \(f(x)\) is \emph{one to one} if \(f(a) \ne f(b)\) if
+    \(a, b \in \operatorname{dom}(f)\) and \(a \ne b\)\\
+    \(\implies\) unique \(y\) for each \(x\) (\(\sin x\) is not 1:1,
+    \(x^3\) is)
+  \item
+    horizontal line test
+  \item
+    if not one to one, it is many to one
 \end{itemize}
 
-\subsection*{Finding inverse functions \(f^{-1}\)}
-
-\begin{itemize}
-\tightlist
-\item
-  if \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
-\item
-  reflection across \(y-x\)
-\item
-  \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1}, \quad \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
-\item
-  inverse \(\ne\) inverse \emph{function} (i.e.~inverse must pass
-  vertical line test)\\
-  \(\implies f^{-1}(x)\) exists \(\iff f(x)\) is one to one
-\item
-  \(f^{-1}(x)=f(x)\) intersections may lie on line \(y=x\)
-\end{itemize}
-
-\subsubsection*{Requirements for showing working for \(f^{-1}\)}
-
-\begin{enumerate}
-\def\labelenumi{\arabic{enumi}.}
-\tightlist
-\item
-  start with \emph{``let \(y=f(x)\)''}
-\item
-  must state \emph{``take inverse''} for line where \(y\) and \(x\) are
-  swapped
-\item
-  do all working in terms of \(y=\dots\)
-\item
-  for sqrt, state \(\pm\) solutions then show restricted
-\item
-  for inverse \emph{function}, state in function notation
-\end{enumerate}
-\subsubsection*{Solving
-\(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\)
-for \(\{0,1,\infty\}\)
-solutions}
-
-where all coefficients are known except for one, and \(a, b\) are known
-
-\begin{enumerate}
-\tightlist
-\item
-  Write as matrices:
-  \(\begin{bmatrix}p & q \\ r & s \end{bmatrix}  \begin{bmatrix} x \\ y \end{bmatrix}  =  \begin{bmatrix} a \\ b \end{bmatrix}\)
-\item
-  Find determinant of first matrix: \(\Delta = ps-qr\)
-\item
-  Let \(\Delta = 0\) for number of solutions \(\ne 1\)\\
-  or let \(\Delta \ne 0\) for one unique solution.
-\item
-  Solve determinant equation to find variable \\
-    \textbf{For infinite/no solutions:}
-\item
-  Substitute variable into both original equations
-\item
-  Rearrange equations so that LHS of each is the same
-\item
-  \(\text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x\)
-  (\(\infty\) solns)\\
-  \(\text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x\) (0
-  solns)
-\end{enumerate}
-
-\colorbox{cas}{On CAS:} Matrix \(\rightarrow\) \texttt{det}
-
-\subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
-
-\begin{itemize}
-\tightlist
-\item
-  Use elimination
-\item
-  Generate two new equations with only two variables
-\item
-  Rearrange \& solve
-\item
-  Substitute one variable into another equation to find another variable
-\end{itemize}
 \subsection*{Odd and even functions}
 
-Even when \(f(x) = -f(x)\)\\
-Odd when \(-f(x) = f(-x)\)
+\begin{align*}
+  \text{Even:}&& f(x)  &= f(-x) \\
+  \text{Odd:} && -f(x) &= f(-x)
+\end{align*}
 
-Function is even if it is symmetrical across \(y\)-axis
-\hspace{5em}\(\implies f(x)=f(-x)\)\\
-Function \(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\
+Even \(\implies\) symmetrical across \(y\)-axis \\
+\(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\
+For \(x^n\), parity of \(n \equiv\) parity of function
 
 \begin{tabularx}{\columnwidth}{XX}
   \textbf{Even:} & \textbf{Odd:} \\
   \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^2)};  \end{axis}\end{tikzpicture} &
-  \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)};  \end{axis}\end{tikzpicture}
+    \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)};  \end{axis}\end{tikzpicture}
 \end{tabularx}
-\pagebreak
-                  \pgfplotsset{every axis/.append style={
-                    xlabel=,    % put the x axis in the middle
-                    ylabel=,    % put the y axis in the middle
-                  }}
-                  \begin{table*}[ht]
-                    \centering
-                    \begin{tabularx}{\textwidth}{r|X|X}
-                      & \(n\) is even & \(n\) is odd \\ \hline
-                      \(x^n, n \in \mathbb{Z}^+\) & 
-                      \makecell{\\\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^2)};  \end{axis}\end{tikzpicture}} &
-                      \makecell{\\\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^3)};  \end{axis}\end{tikzpicture}} \\
-                      \(x^n, n \in \mathbb{Z}^-\) &
-                      \makecell{\\\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-4,  xmax=4, ymax=8, ymin=-0, scale=0.4, smooth] \addplot[orange, mark=none, samples=100] {(x^(-2))};  \end{axis}\end{tikzpicture}} &
-                        \makecell{\\\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth] \addplot[orange, mark=none] {(x^(-1))};  \end{axis}\end{tikzpicture}} \\
-                      \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) &
-                      \makecell{\\\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-1,  xmax=5, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^(1/2))};  \end{axis}\end{tikzpicture}} &
-                        \makecell{\\\begin{tikzpicture}
-                      \begin{axis}[enlargelimits=false, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, ymin=-3, ymax=3, smooth, scale=0.4]
-\addplot [orange,domain=-2:2,samples=1000,no markers] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) };
-\end{axis}
-                        \end{tikzpicture}}
-                    \end{tabularx}
-                  \end{table*}
-                  \pgfplotsset{every axis/.append style={
-                    xlabel=\(x\),    % put the x axis in the middle
-                    ylabel=\(y\),    % put the y axis in the middle
-                  }}
-
-\section{Polynomials}
-
-\subsection*{Quadratics}
-
-\[ x^2 + bx + c = (x+m)(x+n) \]
-\hfill where \(mn=c, \> m+n=b\)
 
-\begin{align*}
-  \hline
-  \textbf{Difference} && a^2 - b^2 &= (a-b)(a+b) \\[2ex]
-  \textbf{Perfect sq.} && a^2 \pm 2ab + b^2 &= (a \pm b^2) \\[2ex]
-  \textbf{Completing} && x^2+bx+c &= (x+\frac{b}{2})^2+c-\frac{b^2}{4} \\
-  && ax^2+bx+c &= a(x-\frac{b}{2a})^2+c-\frac{b^2}{4a} \\[2ex]
-  \textbf{Quadratic} && x &= \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} \\
-  && & \text{where} \Delta=b^2-4ac \\
-  \hline
-\end{align*}
-
-\subsection*{Cubics}
-
-\textbf{Difference of cubes:} \(a^3 - b^3 = (a-b)(a^2 + ab + b^2)\)\\
-\textbf{Sum of cubes:} \(a^3 + b^3 = (a+b)(a^2 - ab + b^2)\)\\
-\textbf{Perfect cubes:} \(a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3\)
-
-\[ y=a(bx-h)^3 + c \]
-
-\begin{itemize}
-\tightlist
-\item
-  \(m=0\) at \emph{stationary point of inflection}
-  (i.e.~(\({h \over b}, k)\))
-\item
-  in form \(y=(x-a)^2(x-b)\), local max at \(x=a\), local min at \(x=b\)
-\item
-  in form \(y=a(x-b)(x-c)(x-d)\): \(x\)-intercepts at \(b, c, d\)
-\item
-  in form \(y=a(x-b)^2(x-c)\), touches \(x\)-axis at \(b\), intercept at
-  \(c\)
+\subsection*{Inverse functions}
+
+\begin{itemize} \tightlist
+  \item Inverse of \(f(x)\) is denoted \(f^{-1}(x)\)
+  \item \(f\) must be one to one
+  \item If \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
+  \item Represents reflection across \(y=x\)
+  \item \(\implies f^{-1}(x)=f(x)\) intersections lie on \(y=x\)
+  \item \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1} \\
+    \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
+  \item ``Inverse'' \(\ne\) ``inverse \emph{function}'' (functions must pass vertical line test)\\
 \end{itemize}
 
-\subsection*{Linear and quadratic
-graphs}
+\subsubsection*{Finding \(f^{-1}\)}
 
-\subsubsection*{Forms of linear
-equations}
+\begin{enumerate} \tightlist
+  \item Let \(y=f(x)\)
+  \item Swap \(x\) and \(y\) (``take inverse''
+  \item Solve for \(y\) \\
+    Sqrt: state \(\pm\) solutions then restrict
+  \item State rule as \(f^{-1}(x)=\dots\)
+  \item For inverse \emph{function}, state in function notation
+\end{enumerate}
 
-\begin{itemize}
-\tightlist
-  \item \(y=mx+c\)
-  \item \(\frac{x}{a} + \frac{y}{b}=1\) where \((x_1, y_1)\) lies on the graph
-  \item \(y-y_1 = m(x-x_1)\) where \((a,0)\) and \((0,b)\) are \(x\)- and \(y\)-intercepts
+\subsection*{Simultaneous equations (linear)}
+
+\begin{itemize} \tightlist
+  \item \textbf{Unique solution} - lines intersect at point
+  \item \textbf{Infinitely many solutions} - lines are equal
+  \item \textbf{No solution} - lines are parallel
 \end{itemize}
 
-\subsection*{Line properties}
+\subsubsection*{Solving \(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) for \(\{0,1,\infty\}\) solutions}
+  where all coefficients are known except for one, and \(a, b\) are known
+
+  \begin{enumerate} \tightlist
+    \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix}  \begin{bmatrix} x \\ y \end{bmatrix}  =  \begin{bmatrix} a \\ b \end{bmatrix}\)
+      \item Find determinant of first matrix: \(\Delta = ps-qr\)
+      \item Let \(\Delta = 0\) for number of solutions \(\ne 1\)\\
+        or let \(\Delta \ne 0\) for one unique solution.
+      \item Solve determinant equation to find variable \\
+        \textbf{For infinite/no solutions:}
+      \item Substitute variable into both original equations
+      \item Rearrange equations so that LHS of each is the same
+      \item \(\text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x\) (\(\infty\) solns)\\
+        \(\text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x\) (0 solns)
+  \end{enumerate}
+
+  \colorbox{cas}{On CAS:} Matrix \(\rightarrow\) \texttt{det}
+
+  \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
+
+    \begin{itemize} \tightlist
+      \item Use elimination
+      \item Generate two new equations with only two variables
+      \item Rearrange \& solve
+      \item Substitute one variable into another equation to find another variable
+    \end{itemize}
 
-Parallel lines: \(m_1 = m_2\)\\
-Perpendicular lines: \(m_1 \times m_2 = -1\)\\
-Distance: \(|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
+    \subsection*{Piecewise functions}
 
-\subsection*{Quartic graphs}
+    \[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\]
 
-\subsubsection*{Forms of quartic
-equations}
+      \textbf{Open circle:} point included\\
+      \textbf{Closed circle:} point not included
 
-\(y=ax^4\)\\
-\(y=a(x-b)(x-c)(x-d)(x-e)\)\\
-\(y=ax^4+cd^2 (c \ge 0)\)\\
-\(y=ax^2(x-b)(x-c)\)\\
-\(y=a(x-b)^2(x-c)^2\)\\
-\(y=a(x-b)(x-c)^3\)
+      \subsection*{Operations on functions}
 
-\subsection*{Simultaneous equations
-(linear)}
+      For \(f \pm g\) and \(f \times g\):
+      \quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\)
 
-\begin{itemize}
-\tightlist
-\item
-  \textbf{Unique solution} - lines intersect at point
-\item
-  \textbf{Infinitely many solutions} - lines are equal
-\item
-  \textbf{No solution} - lines are parallel
-\end{itemize}
+      Addition of linear piecewise graphs: add \(y\)-values at key points
 
+      Product functions:
 
-\input{temp/transformations}
-\input{temp/stuff}
-\input{circ-functions}
-\input{temp/calculus}
+      \begin{itemize}
+          \tightlist
+        \item
+          product will equal 0 if \(f=0\) or \(g=0\)
+        \item
+          \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\)
+      \end{itemize}
+
+      \subsection*{Composite functions}
+
+      \((f \circ g)(x)\) is defined iff
+      \(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\)
+
+      \pgfplotsset{
+        blank/.append style={%
+          enlargelimits=true,
+          ticks=none,
+          yticklabels={,,}, xticklabels={,,},
+          xlabel=, ylabel=,
+          scale=0.4,
+          samples=100, smooth, unbounded coords=jump
+        }
+      }
+      \tikzset{
+        blankplot/.append style={orange, mark=none}
+      }
+
+      \begin{figure*}[ht]
+        \centering
+
+        \begin{tabularx}{\textwidth}{r|Y|Y}
+
+          & \(n\) is even & \(n\) is odd \\ \hline
+
+          \centering \(x^n, n \in \mathbb{Z}^+\) & 
+
+          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+            \begin{axis}[blank, xmin=-3,  xmax=3]
+              \addplot[blankplot] {(x^2)};
+            \end{axis}
+          \end{tikzpicture}} &
+
+          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+            \begin{axis}[blank, xmin=-3,  xmax=3]
+              \addplot[blankplot, domain=-3:3] {(x^3)};
+            \end{axis}
+          \end{tikzpicture}} \\ \hline
+
+          \centering \(x^n, n \in \mathbb{Z}^-\) &
+
+          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+            \begin{axis}[blank, xmin=-4, xmax=4, ymax=8, ymin=-0]
+              \addplot[blankplot, samples=100] {(x^(-2))};
+            \end{axis}
+          \end{tikzpicture}} &
+
+          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+            \begin{axis}[blank, xmin=-3, xmax=3]
+              \addplot[blankplot, domain=-3:-0.1] {(x^(-1))};
+              \addplot[blankplot, domain=0.1:3] {(x^(-1))};
+            \end{axis}
+          \end{tikzpicture}} \\ \hline
+
+          \centering \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) &
+
+          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+            \begin{axis}[blank, xmin=-1,  xmax=5]
+              \addplot[blankplot] {(x^(1/2))};
+            \end{axis}
+          \end{tikzpicture}} &
+
+          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+            \begin{axis}[blank, xmin=-3, xmax=3, ymin=-3, ymax=3]
+              \addplot [blankplot, domain=-2:2] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) };
+            \end{axis}
+          \end{tikzpicture}} \\ \hline
+
+        \end{tabularx}
+      \end{figure*}
+
+      \section{Polynomials}
+
+      \subsection*{Linear equations}
+
+      \subsubsection*{Forms}
+
+      \begin{itemize}
+          \tightlist
+        \item \(y=mx+c\)
+        \item \(\frac{x}{a} + \frac{y}{b}=1\) where \((x_1, y_1)\) lies on the graph
+        \item \(y-y_1 = m(x-x_1)\) where \((a,0)\) and \((0,b)\) are \(x\)- and \(y\)-intercepts
+      \end{itemize}
+
+      \subsubsection*{Line properties}
+
+      Parallel lines: \(m_1 = m_2\)\\
+      Perpendicular lines: \(m_1 \times m_2 = -1\)\\
+      Distance: \(|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
+
+      \subsection*{Quadratics}
+      \setlength{\abovedisplayskip}{1pt}
+      \setlength{\belowdisplayskip}{1pt}
+      \[ x^2 + bx + c = (x+m)(x+n) \]
+      \hfill where \(mn=c, \> m+n=b\)
+
+      \textbf{Difference of squares}
+      \[ a^2 - b^2 = (a-b)(a+b) \]
+      \textbf{Perfect squares}
+      \[ a^2 \pm 2ab + b^2 = (a \pm b^2) \]
+      \textbf{Completing the square}
+      \begin{align*}
+        x^2+bx+c &= (x+\frac{b}{2})^2+c-\frac{b^2}{4} \\
+        ax^2+bx+c &= a(x-\frac{b}{2a})^2+c-\frac{b^2}{4a}
+      \end{align*}
+      \textbf{Quadratic formula}
+      \[ x = \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} \]
+      \hfill (Discriminant \(\Delta=b^2-4ac\))
+
+      \subsection*{Cubics}
+
+      \textbf{Difference of cubes}
+      \[ a^3 - b^3 = (a-b)(a^2 + ab + b^2) \]
+      \textbf{Sum of cubes}
+      \[ a^3 + b^3 = (a+b)(a^2 - ab + b^2) \]
+      \textbf{Perfect cubes}
+      \[ a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3 \]
+
+      \[ y=a(bx-h)^3 + c \]
+
+      \begin{itemize}
+          \tightlist
+        \item
+          \(m=0\) at \emph{stationary point of inflection}
+          (i.e.~(\({h \over b}, k)\))
+        \item \(y=(x-a)^2(x-b)\) --- max at \(x=a\), min at \(x=b\)
+        \item \(y=a(x-b)(x-c)(x-d)\) --- roots at \(b, c, d\)
+        \item \(y=a(x-b)^2(x-c)\) --- roots at \(b\) (instantaneous), \(c\) (intercept)
+      \end{itemize}
+
+      \subsection*{Quartic graphs}
+
+      \subsubsection*{Forms of quartic equations}
+
+      \(y=ax^4\)\\
+      \(y=a(x-b)(x-c)(x-d)(x-e)\)\\
+      \(y=ax^4+cd^2 (c \ge 0)\)\\
+      \(y=ax^2(x-b)(x-c)\)\\
+      \(y=a(x-b)^2(x-c)^2\)\\
+      \(y=a(x-b)(x-c)^3\)
+
+      \input{transformations}
+      \input{stuff}
+      \input{circ-functions}
+      \input{calculus}
+
+      \subfile{statistics-ref}
+
+    \end{multicols}
 
-\end{multicols}
 \end{document}