\documentclass[a4paper]{article}
-\usepackage{standalone}
-\usepackage{newclude}
-\usepackage[a4paper,margin=2cm]{geometry}
-\usepackage{multicol}
-\usepackage{multirow}
+\usepackage[dvipsnames, table]{xcolor}
+\usepackage{adjustbox}
\usepackage{amsmath}
\usepackage{amssymb}
-\usepackage{harpoon}
-\usepackage{tabularx}
-\usepackage{makecell}
-\usepackage[dvipsnames, table]{xcolor}
\usepackage{blindtext}
+\usepackage{dblfloatfix}
+\usepackage{enumitem}
+\usepackage{fancyhdr}
+\usepackage[a4paper,margin=1.8cm]{geometry}
\usepackage{graphicx}
-\usepackage{wrapfig}
-\usepackage{tikz}
-\usepackage{tikz-3dplot}
-\usepackage{pgfplots}
-\pgfplotsset{compat=1.8}
+\usepackage{harpoon}
+\usepackage{keystroke}
+\usepackage{listings}
+\usepackage{makecell}
+\usepackage{mathtools}
\usepackage{mathtools}
-\usetikzlibrary{calc}
-\usetikzlibrary{angles}
-\usetikzlibrary{datavisualization.formats.functions}
-\usetikzlibrary{decorations.markings}
+\usepackage{multicol}
+\usepackage{multirow}
+\usepackage{newclude}
+\usepackage{pgfplots}
+\usepackage{polynom}
+\usepackage{pst-plot}
+\usepackage{standalone}
+\usepackage{subfiles}
+\usepackage{tabularx}
+\usepackage{tabu}
+\usepackage{tcolorbox}
+\usepackage{tikz-3dplot}
+\usepackage{tikz}
+\usepackage{tkz-fct}
+\usepackage[obeyspaces]{url}
+\usepackage{wrapfig}
+
+
+\usetikzlibrary{%
+ angles,
+ arrows,
+ arrows.meta,
+ calc,
+ datavisualization.formats.functions,
+ decorations,
+ decorations.markings,
+ decorations.text,
+ decorations.pathreplacing,
+ decorations.text,
+ patterns,
+ scopes
+}
+
+\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
+
\usepgflibrary{arrows.meta}
-\usepackage{longtable}
-\usepackage{fancyhdr}
+\pgfplotsset{compat=1.16}
+\pgfplotsset{every axis/.append style={
+ axis x line=middle, % centre axes
+ axis y line=middle,
+ axis line style={->}, % arrows on axes
+ xlabel={$x$}, % axes labels
+ ylabel={$y$}
+}}
+
+\psset{dimen=monkey,fillstyle=solid,opacity=.5}
+\def\object{%
+ \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
+ \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
+ \rput{*0}{%
+ \psline{->}(0,-2)%
+ \uput[-90]{*0}(0,-2){$\vec{w}$}}
+}
+
\pagestyle{fancy}
\fancyhead[LO,LE]{Year 12 Methods}
\fancyhead[CO,CE]{Andrew Lorimer}
+\fancypagestyle{plain}{\fancyhead[LO,LE]{} \fancyhead[CO,CE]{}} % rm title & author for first page
+
+\newcommand{\tg}{\mathop{\mathrm{tg}}}
+\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
+\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
+\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
+
\providecommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
-\setlength{\parindent}{0cm}
-\usepackage{mathtools}
-\usepackage{xcolor} % used only to show the phantomed stuff
-\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
+\linespread{1.5}
+\setlength{\parindent}{0cm}
+\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
+
\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}
\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}
+\newcolumntype{Y}{>{\centering\arraybackslash}X}
+
\definecolor{cas}{HTML}{e6f0fe}
-\definecolor{shade1}{HTML}{ffffff}
-\definecolor{shade2}{HTML}{e6f2ff}
-\definecolor{shade3}{HTML}{cce2ff}
-\linespread{1.5}
-\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
-\newcommand{\tg}{\mathop{\mathrm{tg}}}
-\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
-\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
-\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
-\pgfplotsset{every axis/.append style={
- axis x line=middle, % centre axes
- axis y line=middle,
- axis line style={->}, % arrows on axes
- xlabel={$x$}, % axes labels
- ylabel={$y$},
-}}
+\definecolor{important}{HTML}{fc9871}
+\definecolor{highlight}{HTML}{ffb84d}
+\definecolor{dark-gray}{gray}{0.2}
+\definecolor{peach}{HTML}{e6beb2}
+\definecolor{lblue}{HTML}{e5e9f0}
+
+\newtcolorbox{cas}{colframe=cas!75!black, fonttitle=\sffamily\bfseries, title=On CAS, left*=3mm}
+\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=darkgray, fontupper=\sffamily\bfseries}
+\newtcolorbox{theorembox}[1]{colback=green!10!white, colframe=blue!20!white, coltitle=black, fontupper=\sffamily, fonttitle=\sffamily, #1}
+
+
\begin{document}
-\title{\vspace{-2cm}\hrule\vspace{0.4cm} Year 12 Methods}
+\title{\vspace{-20mm}Year 12 Methods}
\author{Andrew Lorimer}
\date{}
\maketitle
\begin{multicols}{2}
+
\section{Functions}
-\begin{itemize}
- \tightlist
+\begin{itemize} \tightlist
\item vertical line test
\item each \(x\) value produces only one \(y\) value
\end{itemize}
\subsection*{One to one functions}
-\begin{itemize}
-\tightlist
-\item
- \(f(x)\) is \emph{one to one} if \(f(a) \ne f(b)\) if
- \(a, b \in \operatorname{dom}(f)\) and \(a \ne b\)\\
- \(\implies\) unique \(y\) for each \(x\) (\(\sin x\) is not 1:1,
- \(x^3\) is)
-\item
- horizontal line test
-\item
- if not one to one, it is many to one
-\end{itemize}
-
-\subsection*{Finding inverse functions \(f^{-1}\)}
-
-\begin{itemize}
-\tightlist
-\item
- if \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
-\item
- reflection across \(y-x\)
-\item
- \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1}, \quad \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
-\item
- inverse \(\ne\) inverse \emph{function} (i.e.~inverse must pass
- vertical line test)\\
- \(\implies f^{-1}(x)\) exists \(\iff f(x)\) is one to one
-\item
- \(f^{-1}(x)=f(x)\) intersections may lie on line \(y=x\)
+\begin{itemize} \tightlist
+ \item \(f(x)\) is 1:1 if \(f(a) \ne f(b) \> \forall \>\{a,b\} \in \operatorname{dom}(f)\) \\
+ \(\implies\) unique \(y\) for each \(x\)
+ \item e.g. \(\sin x\) is not 1:1, \(x^3\) is
+ \item horizontal line test
+ \item if not one to one, it is many to one
\end{itemize}
-\subsubsection*{Requirements for showing working for \(f^{-1}\)}
-
-\begin{enumerate}
-\def\labelenumi{\arabic{enumi}.}
-\tightlist
-\item
- start with \emph{``let \(y=f(x)\)''}
-\item
- must state \emph{``take inverse''} for line where \(y\) and \(x\) are
- swapped
-\item
- do all working in terms of \(y=\dots\)
-\item
- for sqrt, state \(\pm\) solutions then show restricted
-\item
- for inverse \emph{function}, state in function notation
-\end{enumerate}
-\subsubsection*{Solving
-\(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\)
-for \(\{0,1,\infty\}\)
-solutions}
-
-where all coefficients are known except for one, and \(a, b\) are known
-
-\begin{enumerate}
-\tightlist
-\item
- Write as matrices:
- \(\begin{bmatrix}p & q \\ r & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}\)
-\item
- Find determinant of first matrix: \(\Delta = ps-qr\)
-\item
- Let \(\Delta = 0\) for number of solutions \(\ne 1\)\\
- or let \(\Delta \ne 0\) for one unique solution.
-\item
- Solve determinant equation to find variable \\
- \textbf{For infinite/no solutions:}
-\item
- Substitute variable into both original equations
-\item
- Rearrange equations so that LHS of each is the same
-\item
- \(\text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x\)
- (\(\infty\) solns)\\
- \(\text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x\) (0
- solns)
-\end{enumerate}
-
-\colorbox{cas}{On CAS:} Matrix \(\rightarrow\) \texttt{det}
-
-\subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
-
-\begin{itemize}
-\tightlist
-\item
- Use elimination
-\item
- Generate two new equations with only two variables
-\item
- Rearrange \& solve
-\item
- Substitute one variable into another equation to find another variable
-\end{itemize}
\subsection*{Odd and even functions}
-Even when \(f(x) = -f(x)\)\\
-Odd when \(-f(x) = f(-x)\)
+\begin{align*}
+ \text{Even:}&& f(x) &= f(-x) \\
+ \text{Odd:} && -f(x) &= f(-x)
+\end{align*}
-Function is even if it is symmetrical across \(y\)-axis
-\hspace{5em}\(\implies f(x)=f(-x)\)\\
-Function \(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\
+Even \(\implies\) symmetrical across \(y\)-axis \\
+\(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\
+For \(x^n\), parity of \(n \equiv\) parity of function
\begin{tabularx}{\columnwidth}{XX}
\textbf{Even:} & \textbf{Odd:} \\
\begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^2)}; \end{axis}\end{tikzpicture} &
- \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)}; \end{axis}\end{tikzpicture}
+ \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)}; \end{axis}\end{tikzpicture}
\end{tabularx}
-\pagebreak
- \pgfplotsset{every axis/.append style={
- xlabel=, % put the x axis in the middle
- ylabel=, % put the y axis in the middle
- }}
- \begin{table*}[ht]
- \centering
- \begin{tabularx}{\textwidth}{r|X|X}
- & \(n\) is even & \(n\) is odd \\ \hline
- \(x^n, n \in \mathbb{Z}^+\) &
- \makecell{\\\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^2)}; \end{axis}\end{tikzpicture}} &
- \makecell{\\\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^3)}; \end{axis}\end{tikzpicture}} \\
- \(x^n, n \in \mathbb{Z}^-\) &
- \makecell{\\\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-4, xmax=4, ymax=8, ymin=-0, scale=0.4, smooth] \addplot[orange, mark=none, samples=100] {(x^(-2))}; \end{axis}\end{tikzpicture}} &
- \makecell{\\\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth] \addplot[orange, mark=none] {(x^(-1))}; \end{axis}\end{tikzpicture}} \\
- \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) &
- \makecell{\\\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-1, xmax=5, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^(1/2))}; \end{axis}\end{tikzpicture}} &
- \makecell{\\\begin{tikzpicture}
- \begin{axis}[enlargelimits=false, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, ymin=-3, ymax=3, smooth, scale=0.4]
-\addplot [orange,domain=-2:2,samples=1000,no markers] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) };
-\end{axis}
- \end{tikzpicture}}
- \end{tabularx}
- \end{table*}
- \pgfplotsset{every axis/.append style={
- xlabel=\(x\), % put the x axis in the middle
- ylabel=\(y\), % put the y axis in the middle
- }}
-
-\section{Polynomials}
-
-\subsection*{Quadratics}
-
-\[ x^2 + bx + c = (x+m)(x+n) \]
-\hfill where \(mn=c, \> m+n=b\)
-
-\begin{align*}
- \hline
- \textbf{Difference} && a^2 - b^2 &= (a-b)(a+b) \\[2ex]
- \textbf{Perfect sq.} && a^2 \pm 2ab + b^2 &= (a \pm b^2) \\[2ex]
- \textbf{Completing} && x^2+bx+c &= (x+\frac{b}{2})^2+c-\frac{b^2}{4} \\
- && ax^2+bx+c &= a(x-\frac{b}{2a})^2+c-\frac{b^2}{4a} \\[2ex]
- \textbf{Quadratic} && x &= \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} \\
- && & \text{where} \Delta=b^2-4ac \\
- \hline
-\end{align*}
-\subsection*{Cubics}
-
-\textbf{Difference of cubes:} \(a^3 - b^3 = (a-b)(a^2 + ab + b^2)\)\\
-\textbf{Sum of cubes:} \(a^3 + b^3 = (a+b)(a^2 - ab + b^2)\)\\
-\textbf{Perfect cubes:} \(a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3\)
-
-\[ y=a(bx-h)^3 + c \]
-
-\begin{itemize}
-\tightlist
-\item
- \(m=0\) at \emph{stationary point of inflection}
- (i.e.~(\({h \over b}, k)\))
-\item
- in form \(y=(x-a)^2(x-b)\), local max at \(x=a\), local min at \(x=b\)
-\item
- in form \(y=a(x-b)(x-c)(x-d)\): \(x\)-intercepts at \(b, c, d\)
-\item
- in form \(y=a(x-b)^2(x-c)\), touches \(x\)-axis at \(b\), intercept at
- \(c\)
+\subsection*{Inverse functions}
+
+\begin{itemize} \tightlist
+ \item Inverse of \(f(x)\) is denoted \(f^{-1}(x)\)
+ \item \(f\) must be one to one
+ \item If \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
+ \item Represents reflection across \(y=x\)
+ \item \(\implies f^{-1}(x)=f(x)\) intersections lie on \(y=x\)
+ \item \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1} \\
+ \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
+ \item ``Inverse'' \(\ne\) ``inverse \emph{function}'' (functions must pass vertical line test)\\
\end{itemize}
-\subsection*{Linear and quadratic
-graphs}
+\subsubsection*{Finding \(f^{-1}\)}
-\subsubsection*{Forms of linear
-equations}
+\begin{enumerate} \tightlist
+ \item Let \(y=f(x)\)
+ \item Swap \(x\) and \(y\) (``take inverse''
+ \item Solve for \(y\) \\
+ Sqrt: state \(\pm\) solutions then restrict
+ \item State rule as \(f^{-1}(x)=\dots\)
+ \item For inverse \emph{function}, state in function notation
+\end{enumerate}
-\begin{itemize}
-\tightlist
- \item \(y=mx+c\)
- \item \(\frac{x}{a} + \frac{y}{b}=1\) where \((x_1, y_1)\) lies on the graph
- \item \(y-y_1 = m(x-x_1)\) where \((a,0)\) and \((0,b)\) are \(x\)- and \(y\)-intercepts
+\subsection*{Simultaneous equations (linear)}
+
+\begin{itemize} \tightlist
+ \item \textbf{Unique solution} - lines intersect at point
+ \item \textbf{Infinitely many solutions} - lines are equal
+ \item \textbf{No solution} - lines are parallel
\end{itemize}
-\subsection*{Line properties}
+\subsubsection*{Solving \(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) for \(\{0,1,\infty\}\) solutions}
+ where all coefficients are known except for one, and \(a, b\) are known
+
+ \begin{enumerate} \tightlist
+ \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}\)
+ \item Find \(\det(\text{first matrix}) = ps-qr\)
+ \item Let \(\det = 0\) for \(\{0,\infty\}\) solutions
+ or \(\det \ne 0\) for 1 solution
+ \item Solve to find variable \\ \\
+ \textbf{For infinite/no solutions:}
+ \item Substitute variable into both original equations
+ \item Rearrange so that LHS of each is the same
+ \item \(\begin{aligned}[t]
+ \infty \text{ solns: } & \text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x \\
+ 0 \text{ solns: } & \text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x
+ \end{aligned}\)
+ \end{enumerate}
+
+ \begin{cas}
+ Action \(\rightarrow\) Matrix \(\rightarrow\) Calculation \(\rightarrow\) \texttt{det}
+ \end{cas}
+
+ \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
+
+ \begin{itemize} \tightlist
+ \item Use elimination
+ \item Generate two new equations with only two variables
+ \item Rearrange \& solve
+ \item Substitute one variable into another equation to find another variable
+ \end{itemize}
+
+ \subsection*{Piecewise functions}
+
+ \[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\]
+
+ \textbf{Open circle:} point included\\
+ \textbf{Closed circle:} point not included
+
+\begin{cas}
+ Define piecewise functions: \\
+ \-\hspace{1em}Math3 \(\rightarrow\)
+ \begin{tikzpicture}%
+ \draw rectangle (0.5,0.5);
+ \node at (0.08,0.25) {\(\{\)};
+ \filldraw [black] (0.15, 0.4) rectangle(0.25, 0.3);
+ \draw (0.35, 0.4) rectangle(0.45, 0.3);
+ \node [font=\footnotesize] at (0.3,0.3) {\verb;,;};
+ \draw (0.15, 0.2) rectangle(0.25, 0.1);
+ \node [font=\footnotesize] at (0.3,0.1) {\verb;,;};
+ \draw (0.35, 0.2) rectangle(0.45, 0.1);
+ \end{tikzpicture}
+ % TODO: finish this section
+\end{cas}
+
+ \subsection*{Operations on functions}
+
+ For \(f \pm g\) and \(f \times g\):
+ \quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\)
+
+ Addition of linear piecewise graphs: add \(y\)-values at key points
+
+ Product functions:
+
+ \begin{itemize}
+ \tightlist
+ \item
+ product will equal 0 if \(f=0\) or \(g=0\)
+ \item
+ \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\)
+ \end{itemize}
+
+ \subsection*{Composite functions}
+
+ \((f \circ g)(x)\) is defined iff
+ \(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\)
+
+ \pgfplotsset{
+ blank/.append style={%
+ enlargelimits=true,
+ ticks=none,
+ yticklabels={,,}, xticklabels={,,},
+ xlabel=, ylabel=,
+ scale=0.4,
+ samples=100, smooth, unbounded coords=jump
+ }
+ }
+ \tikzset{
+ blankplot/.append style={orange, mark=none}
+ }
+
+ \begin{figure*}[ht]
+ \centering
+
+ \begin{tabularx}{\textwidth}{|r|Y|Y|}
+
+ \hline
+ \rowcolor{lblue}
+ & \(n\) is even & \(n\) is odd \\ \hline
+
+ \centering \(x^n, n \in \mathbb{Z}^+\) &
+
+ \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+ \begin{axis}[blank, xmin=-3, xmax=3]
+ \addplot[blankplot] {(x^2)};
+ \end{axis}
+ \end{tikzpicture}} &
+
+ \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+ \begin{axis}[blank, xmin=-3, xmax=3]
+ \addplot[blankplot, domain=-3:3] {(x^3)};
+ \end{axis}
+ \end{tikzpicture}} \\ \hline
+
+ \centering \(x^n, n \in \mathbb{Z}^-\) &
+
+ \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+ \begin{axis}[blank, xmin=-4, xmax=4, ymax=8, ymin=-0]
+ \addplot[blankplot, samples=100] {(x^(-2))};
+ \end{axis}
+ \end{tikzpicture}} &
+
+ \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+ \begin{axis}[blank, xmin=-3, xmax=3]
+ \addplot[blankplot, domain=-3:-0.1] {(x^(-1))};
+ \addplot[blankplot, domain=0.1:3] {(x^(-1))};
+ \end{axis}
+ \end{tikzpicture}} \\ \hline
+
+ \centering \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) &
+
+ \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+ \begin{axis}[blank, xmin=-1, xmax=5]
+ \addplot[blankplot] {(x^(1/2))};
+ \end{axis}
+ \end{tikzpicture}} &
+
+ \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+ \begin{axis}[blank, xmin=-3, xmax=3, ymin=-3, ymax=3]
+ \addplot [blankplot, domain=-2:2] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) };
+ \end{axis}
+ \end{tikzpicture}} \\ \hline
+
+ \end{tabularx}
+ \end{figure*}
+
+ \section{Polynomials}
+
+ \subsection*{Factor theorem}
+
+ \begin{theorembox}{title=General form \(\beta x + \alpha\)}
+ If \(\beta x + \alpha\) is a factor of \(P(x)\), \\
+ \-\hspace{1em}then \(P(-\dfrac{\alpha}{\beta})=0\).
+ \end{theorembox}
+
+ \begin{theorembox}{title=Simple form \(x-a\)}
+ If \((x-a)\) is a factor of \(P(x)\), remainder \(R=0\). \\
+ \-\hspace{1em}\(\implies P(a)=0\)
+ \end{theorembox}
+
+ \subsection*{Remainder theorem}
+
+ \begin{theorembox}{}
+ When \(P(x)\) is divided by \(\beta x + \alpha\), the remainder is \(-\dfrac{\alpha}{\beta}\).
+ \end{theorembox}
+
+ \subsection*{Rational root theorem}
+ Let \(P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0\) be a polynomial of degree \(n\) with \(a_i \in \mathbb{Z} \forall a\). Let \(\alpha, \beta \in \mathbb{Z}\) such that their highest common factor is 1 (i.e. relatively prime).
+
+ If \(\beta x + \alpha\) is a factor of \(P(x)\), then \(\beta\) divides \(a_n\) and \(\alpha\) divides \(a_0\) .
+
+ \subsubsection*{Discriminant}
+ \[\begin{cases}
+ b^2-4ac > 0 & \text{two solutions} \\
+ b^2-4ac = 0 & \text{one solution} \\
+ b^2-4ac < 0 & \text{no solutions}
+ \end{cases}\]
+ \begin{warning}
+ Flip inequality sign when multiplying by -1
+ \end{warning}
+
+ \subsection*{Long division}
+
+ \[ \polylongdiv{x^2+2x+4}{x-1} \]
+
+ \begin{cas}
+ Action \(\rightarrow\) Transformation \(\rightarrow\) \texttt{propFrac}
+ \end{cas}
-Parallel lines: \(m_1 = m_2\)\\
-Perpendicular lines: \(m_1 \times m_2 = -1\)\\
-Distance: \(|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
+ \subsection*{Linear equations}
-\subsection*{Quartic graphs}
+ \subsubsection*{Forms}
-\subsubsection*{Forms of quartic
-equations}
+ \begin{itemize}
+ \tightlist
+ \item \(y=mx+c\)
+ \item \(\frac{x}{a} + \frac{y}{b}=1\) where \((x_1, y_1)\) lies on the graph
+ \item \(y-y_1 = m(x-x_1)\) where \((a,0)\) and \((0,b)\) are \(x\)- and \(y\)-intercepts
+ \end{itemize}
-\(y=ax^4\)\\
-\(y=a(x-b)(x-c)(x-d)(x-e)\)\\
-\(y=ax^4+cd^2 (c \ge 0)\)\\
-\(y=ax^2(x-b)(x-c)\)\\
-\(y=a(x-b)^2(x-c)^2\)\\
-\(y=a(x-b)(x-c)^3\)
+ \subsubsection*{Line properties}
+
+ Parallel lines: \(m_1 = m_2\)\\
+ Perpendicular lines: \(m_1 \times m_2 = -1\)\\
+ Distance: \(|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
+
+ \subsection*{Quadratics}
-\subsection*{Simultaneous equations
-(linear)}
+ \setlength{\abovedisplayskip}{1pt}
+ \setlength{\belowdisplayskip}{1pt}
-\begin{itemize}
-\tightlist
-\item
- \textbf{Unique solution} - lines intersect at point
-\item
- \textbf{Infinitely many solutions} - lines are equal
-\item
- \textbf{No solution} - lines are parallel
-\end{itemize}
+ \textbf{Linear factorisation}
+ \[ x^2 + bx + c = (x+m)(x+n) \]
+ \hfill where \(mn=c, \> m+n=b\)
+
+ \textbf{Difference of squares}
+ \[ a^2 - b^2 = (a-b)(a+b) \]
+ \textbf{Perfect squares}
+ \[ a^2 \pm 2ab + b^2 = (a \pm b^2) \]
+ \textbf{Completing the square}
+ \begin{align*}
+ x^2+bx+c &= (x+\frac{b}{2})^2+c-\frac{b^2}{4} \\
+ ax^2+bx+c &= a(x-\frac{b}{2a})^2+c-\frac{b^2}{4a}
+ \end{align*}
+ \textbf{Quadratic formula}
+ \[ x = \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} \]
+ \hfill (Discriminant \(\Delta=b^2-4ac\))
+
+ \subsection*{Cubics}
+
+ \textbf{Difference of cubes}
+ \[ a^3 - b^3 = (a-b)(a^2 + ab + b^2) \]
+ \textbf{Sum of cubes}
+ \[ a^3 + b^3 = (a+b)(a^2 - ab + b^2) \]
+ \textbf{Perfect cubes}
+ \[ a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3 \]
+
+ \[ y=a(bx-h)^3 + c \]
+
+ \begin{itemize}
+ \tightlist
+ \item
+ \(m=0\) at \emph{stationary point of inflection}
+ (i.e.~(\({h \over b}, k)\))
+ \item \(y=(x-a)^2(x-b)\) --- max at \(x=a\), min at \(x=b\)
+ \item \(y=a(x-b)(x-c)(x-d)\) --- roots at \(b, c, d\)
+ \item \(y=a(x-b)^2(x-c)\) --- roots at \(b\) (instantaneous), \(c\) (intercept)
+ \end{itemize}
+
+ \subsection*{Quartic graphs}
+
+ \subsubsection*{Forms of quartic equations}
+
+ \(y=ax^4\)\\
+ \(y=a(x-b)(x-c)(x-d)(x-e)\)\\
+ \(y=ax^4+cd^2 (c \ge 0)\)\\
+ \(y=ax^2(x-b)(x-c)\)\\
+ \(y=a(x-b)^2(x-c)^2\)\\
+ \(y=a(x-b)(x-c)^3\)
+
+ \input{transformations}
+ \input{stuff}
+ \input{circ-functions}
+ \input{calculus}
+ \subfile{statistics-ref}
-\input{temp/transformations}
-\input{temp/stuff}
-\input{circ-functions}
-\input{temp/calculus}
+ \end{multicols}
-\end{multicols}
\end{document}