[spec] graphics for reciprocal circular functions
[notes.git] / spec / circ.md
index 8f3fcecfedb10a5d50b0b15610b1b4c6c4a12502..9d7dfbf3b4c359c447ee5edeba76b63f7faea8ce 100644 (file)
@@ -1,9 +1,16 @@
 # Circular functions
 
+Period of $a\sin(bx)$ is ${2\pi} \over b$
+
+Period of $a\tan(nx)$ is $\pi \over n$  
+Asymptotes at $x={2k+1)\pi \over 2n} \> \vert \> k \in \mathbb{Z}$
+
 ## Reciprocal functions
 
 ### Cosecant
 
+![](graphics/csc.png)
+
 $$\operatorname{cosec} \theta = {1 \over \sin \theta} \> \vert \> \sin \theta \ne 0$$
 
 - **Domain** $= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}$
@@ -14,6 +21,8 @@ $$\operatorname{cosec} \theta = {1 \over \sin \theta} \> \vert \> \sin \theta \n
 
 ### Secant
 
+!()[graphics/sec.png]
+
 $$\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne 0$$
 
 - **Domain** $= \mathbb{R} \setminus \{{{(2n + 1) \pi} \over 2 } : n \in \mathbb{Z}\}$
@@ -24,6 +33,8 @@ $$\operatorname{sec} \theta = {1 \over \cos \theta} \> \vert \> \cos \theta \ne
 
 ### Cotangent
 
+!()[graphics/cot.png]
+
 $$\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0$$
 
 - **Domain** $= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}$