Parametric equation of line through point $(x_0, y_0, z_0)$ and parallel to $a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}$ is:
\begin{equation}\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\end{equation}
+
+## Vector functions
+
+$$\boldsymbol{r}(t)=x\boldsymbol{i}+y\boldsymbol{y}$$
+
+- If $\boldsymbol{r}(t)$ represents position with time, then the graph of endpoints of $\boldsymbol{r}(t)$ represents the Cartesian path.
+- Domain of $\boldsymbol{r}(t)$ is the range of $x(t)$
+- Range of $\boldsymbol{r}(t)$ is the range of $y(t)$
+
+## Vector calculus
+
+### Derivative
+
+Let $\boldsymbol{r}(t)=x(t)\boldsymbol{i} + y(t)\boldsymmbol(j)$. If both $x(t)$ and $y(t)$ are differentiable, then:
+
+$$\boldsymbol{r}(t)=x(t)\boldsymbol{i}+y(t)\boldsymbol{j}$$