- \documentclass{standalone}
- \usepackage{cleveref}
- \usepackage{harpoon}
- - \usepackage{accent} \newcommand{\vect}[1]{\accentset{\rightharpoonup}{#1}}
----
+ - \usepackage{accent}
+ - \usepackage{amsmath}
+...
# Vectors
## Vector addition
-$\vec{u} + \vec{v}$ can be represented by drawing each vector head to tail then joining the lines.
+$\boldsymbol{u} + \boldsymbol{v}$ can be represented by drawing each vector head to tail then joining the lines.
Addition is commutative (parallelogram)
## Scalar multiplication
-For $k \in \mathbb{R}^+$, $k\vec{u}$ has the same direction as $\vec{u}$ but length is multiplied by a factor of $k$.
+For $k \in \mathbb{R}^+$, $k\boldsymbol{u}$ has the same direction as $\boldsymbol{u}$ but length is multiplied by a factor of $k$.
When multiplied by $k < 0$, direction is reversed and length is multplied by $k$.
## Vector subtraction
-To find $\vec{u} - \vec{v}$, add $\vec{-v}$ to $\vec{u}$
+To find $\boldsymbol{u} - \boldsymbol{v}$, add $\boldsymbol{-v}$ to $\boldsymbol{u}$
## Parallel vectors
Parallel vectors have same direction or opposite direction.
-**Two non-zero vectors $\vec{u}$ and $\vec{v}$ are parallel if there is some $k \in \mathbb{R} \setminus \{0\}$ such at $\vec{u} = k \vec{v}$**
+**Two non-zero vectors $\boldsymbol{u}$ and $\boldsymbol{v}$ are parallel if there is some $k \in \mathbb{R} \setminus \{0\}$ such at $\boldsymbol{u} = k \boldsymbol{v}$**
## Position vectors
Vectors may describe a position relative to $O$.
-For a point $A$, the position vector is $\vec{OA}$
+For a point $A$, the position vector is $\boldsymbol{OA}$
## Linear combinations of non-parallel vectors
-If two non-zero vectors $\vec{a}$ and $\vec{b}$ are not parallel, then:
+If two non-zero vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are not parallel, then:
-$$m\vec{a} + n\vec{b} = p \vec{a} + q \vec{b}\quad\text{implies}\quad m = p, \> n = q$$
+$$m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad\text{implies}\quad m = p, \> n = q$$
## Column vector notation
## Component notation
-A vector $\vec{u} = \begin{bmatrix}x\\ y \end{bmatrix}$ can be written as $\vec{u} = x\vec{i} + y\vec{j}$.
-$\vec{u}$ is the sum of two components $x\vec{i}$ and $y\vec{j}$
-Magnitude of vector $\vec{u} = x\vec{i} + y\vec{j}$ is denoted by $|u|=\sqrt{x^2+y^2}$
+A vector $\boldsymbol{u} = \begin{bmatrix}x\\ y \end{bmatrix}$ can be written as $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$.
+$\boldsymbol{u}$ is the sum of two components $x\boldsymbol{i}$ and $y\boldsymbol{j}$
+Magnitude of vector $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$ is denoted by $|u|=\sqrt{x^2+y^2}$
Basic algebra applies:
-$(x\vec{i} + y\vec{j}) + (m\vec{i} + n\vec{j}) = (x + m)\vec{i} + (y+n)\vec{j}$
+$(x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}$
Two vectors equal if and only if their components are equal.
## Unit vectors
-A vector of length 1. $\vec{i}$ and $\vec{j}$ are unit vectors.
+A vector of length 1. $\boldsymbol{i}$ and $\boldsymbol{j}$ are unit vectors.
+
+A unit vector in direction of $\boldsymbol{a}$ is denoted by $\hat{\boldsymbol{a}}$:
+
+$$\hat{\boldsymbol{a}}={1 \over {|\boldsymbol{a}|}}\boldsymbol{a}\quad (\implies |\hat{\boldsymbol{a}}|=1)$$
+
+Also, unit vector of $\boldsymbol{a}$ can be defined by $\boldsymbol{a} \cdot {|\boldsymbol{a}|}$
+
+## Scalar products / dot products
+
+If $\boldsymbol{a} = a_i \boldsymbol{i} + a_2 \boldsymbol{j}$ and $\boldsymbol{b} = b_i \boldsymbol{i} + b_2 \boldsymbol{j}$, the dot product is:
+$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2$$
+
+Produces a real number, not a vector.
+
+$$\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$$
+
+## Geometric scalar products
+
+$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$$
+
+where $0 \le \theta \le \pi$
+
+## Perpendicular vectors
+
+If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, then $\boldsymbol{a} \perp \boldsymbol{b}$ (since $\cos 90 = 0$)
+
+## Finding angle between vectors
+
+$$\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}$$
+
+
+## Vector projections
+
+Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitude of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$.
+
+$$\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$$
+
-A unit vector in direction of $\vec{a}$ is denoted by $\hat{\vec{a}}$