- *Integrand* is $f$.
- $F(x)$ may be any integral, i.e. $c$ is inconsequential
+#### Properties
+
+$$\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx$$
+
+$$\int^a_a f(x) \> dx = 0$$
+
+$$\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx$$
+
+$$\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx$$
+
+$$\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx$$
+
### Integration by substitution
$$\int f(u) {du \over dx} \cdot dx = \int f(u) \cdot du$$
- $\cos^2x={1 \over 2}(1+\cos 2x)$
- $\sin 2x = 2 \sin x \cos x$
-### Partial fractions
+## Partial fractions
On CAS: Action $\rightarrow$ Transformation $\rightarrow$ `expand/combine`