logarithmic derivatives
[notes.git] / spec / calculus.md
index 4c3331860356d8310bfdf56c7fb075fbc790b0dc..2b68bf5692bec02045cdccc1b1d81146c69ecd72 100644 (file)
@@ -93,7 +93,7 @@ where $u$ and $v$ are functions of $x$
 
 $$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
 
-## Chain rule
+## Chain rule for $(f\circ g)$
 
 $$(f \circ g)^\prime = (f^\prime \circ g) \cdot g^\prime$$
 
@@ -130,3 +130,37 @@ If $f(x)={u(x) \over v(x)}$, then $f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)
 
 If $y={u(x) \over v(x)}$, then derivative ${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$
 
+## Logarithms
+
+$$\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x$$
+
+Wikipedia:
+
+> the logarithm of a given number $x$ is the exponent to which another fixed number, the base $b$, must be raised, to produce that number $x$
+
+### Logarithmic identities  
+$\log_b (xy)=\log_b x + \log_b y$  
+$\log_b x^n = n \log_b x$  
+$\log_b y^{x^n} = x^n \log_b y$
+
+### $e$ as a logarithm
+
+$$\log_e e = 1$$
+$$\ln x = \log_e x$$
+
+### Differentiating logarithms
+$${d \over dx} \log_b x = {1 \over x \ln b}$$
+
+## Solving $e^x$
+
+| $f(x)$ | $f^\prime(x)$ |
+| ------ | ------------- |
+| $\sin x$ | $\cos x$ |
+| $\sin ax$ | $a\cos ax$ |
+| $\cos x$ | $-\sin x$ |
+| $\cos ax$ | $-a \sin ax$ |
+| $e^x$ | $e^x$ |
+| $e^{ax}$ | $ae^{ax}$ |
+| $\log_e x$ | $1 \over x$ |
+| $\log_e {ax}$ | $1 \over x$ |
+