+---
+geometry: margin=1.5cm
+---
+
# Polynomials
## Factorising
## Cubic graphs
-$$y=a(x-b)^3 + c$$
+$$y=a(bx-h)^3 + c$$
-- $m=0$ at *stationary point of inflection*
+- $m=0$ at *stationary point of inflection* (i.e. ({h \over b}, k)$)
- in form $y=(x-a)^2(x-b)$, local max at $x=a$, local min at $x=b$
- in form $y=a(x-b)(x-c)(x-d)$: $x$-intercepts at $b, c, d$
-
+- in form $y=a(x-b)^2(x-c)$, touches $x$-axis at $b$, intercept at $c$
## Quartic graphs
- **Infinitely many solutions** - lines are equal
- **No solution** - lines are parallel
-### Solving $\begin{cases}px + qy = a \\ rx + sy = b\end{cases}$ for one, infinite and no solutions
+### Solving $\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases}$ for one, infinite and no solutions
where all coefficients are known except for one, and $a, b$ are known
Or use Matrix -> `det` on CAS.
-### Solving $\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\
+### Solving $\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\
a_2 x + b_2 y + c_2 z = d_2 \\
-a_3 x + b_3 y + c_3 z = d_3\end{cases}$
+a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}$
- Use elimination
- Generate two new equations with only two variables
- Rearrange & solve
- Substitute one variable into another equation to find another variable
-- etc.
\ No newline at end of file
+- etc.