+---
+geometry: margin=2cm
+columns: 2
+graphics: yes
+tables: yes
+author: Andrew Lorimer
+classoption: twocolumn
+---
+
# Differential calculus
## Limits
| $f(x)$ | $\int f(x) \cdot dx$ |
| ------------------------------- | ---------------------------- |
| $k$ (constant) | $kx + c$ |
-| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
+| $x^n$ | ${x^{n+1} \over {n+1}} + c$ |
| $a x^{-n}$ | $a \cdot \log_e x + c$ |
+| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ |
+| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ |
| $e^{kx}$ | ${1 \over k} e^{kx} + c$ |
| $e^k$ | $e^kx + c$ |
| $\sin kx$ | $-{1 \over k} \cos (kx) + c$ |
| ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ |
| $g^\prime(x)\cdot f^\prime(g(x)$ | $f(g(x))$ (chain rule)|
| $f(x) \cdot g(x)$ | $\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx$ |
-| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ |
-| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ |
## Applications of antidifferentiation