[spec] formatting for calculus rules
[notes.git] / methods / methods-collated.tex
index 618f4437d4a7e90fb0de7a535fc5be954f946a90..c4d21f10e356277e211572b0c50915794d520009 100644 (file)
 \documentclass[a4paper]{article}
-\usepackage{standalone}
-\usepackage{newclude}
-\usepackage[a4paper,margin=2cm]{geometry}
-\usepackage{multicol}
-\usepackage{multirow}
+\usepackage[dvipsnames, table]{xcolor}
+\usepackage{adjustbox}
 \usepackage{amsmath}
 \usepackage{amssymb}
+\usepackage{blindtext}
+\usepackage{dblfloatfix}
+\usepackage{enumitem}
+\usepackage{fancyhdr}
+\usepackage[a4paper,margin=1.8cm]{geometry}
+\usepackage{graphicx}
 \usepackage{harpoon}
+\usepackage{keystroke}
+\usepackage{listings}
+\usepackage{makecell}
+\usepackage{mathtools}
+\usepackage{mathtools}
+\usepackage{multicol}
+\usepackage{multirow}
+\usepackage{newclude}
+\usepackage{pgfplots}
+\usepackage{polynom}
+\usepackage{pst-plot}
+\usepackage{standalone}
+\usepackage{subfiles}
 \usepackage{tabularx}
 \usepackage{tabu}
-\usepackage{makecell}
-\usepackage[dvipsnames, table]{xcolor}
-\usepackage{blindtext}
-\usepackage{graphicx}
-\usepackage{wrapfig}
-\usepackage{tikz}
+\usepackage{tcolorbox}
 \usepackage{tikz-3dplot}
-\usepackage{pgfplots}
-\pgfplotsset{compat=1.8}
-\usepackage{mathtools}
-\usetikzlibrary{calc}
-\usetikzlibrary{angles}
-\usetikzlibrary{datavisualization.formats.functions}
-\usetikzlibrary{decorations.markings}
+\usepackage{tikz}
+\usepackage{tkz-fct}
+\usepackage[obeyspaces]{url}
+\usepackage{wrapfig}
+
+
+\usetikzlibrary{%
+  angles,
+  arrows,
+  arrows.meta,
+  calc,
+  datavisualization.formats.functions,
+  decorations,
+  decorations.markings,
+  decorations.text,
+  decorations.pathreplacing,
+  decorations.text,
+  patterns,
+  scopes
+}
+
+\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
+
 \usepgflibrary{arrows.meta}
-\usepackage{longtable}
-\usepackage{fancyhdr}
+\pgfplotsset{compat=1.16}
+\pgfplotsset{every axis/.append style={
+  axis x line=middle,    % centre axes
+  axis y line=middle,
+  axis line style={->},  % arrows on axes
+  xlabel={$x$},          % axes labels
+  ylabel={$y$}
+}}
+
+\psset{dimen=monkey,fillstyle=solid,opacity=.5}
+\def\object{%
+    \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
+    \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
+    \rput{*0}{%
+        \psline{->}(0,-2)%
+        \uput[-90]{*0}(0,-2){$\vec{w}$}}
+}
+
 \pagestyle{fancy}
 \fancyhead[LO,LE]{Year 12 Methods}
 \fancyhead[CO,CE]{Andrew Lorimer}
 \fancypagestyle{plain}{\fancyhead[LO,LE]{} \fancyhead[CO,CE]{}} % rm title & author for first page
+
+\newcommand{\tg}{\mathop{\mathrm{tg}}}
+\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
+\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
+\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
+
 \providecommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
-\setlength{\parindent}{0cm}
-\usepackage{mathtools}
-\usepackage{xcolor} % used only to show the phantomed stuff
-\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
 \newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
 \newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
+\linespread{1.5}
+\setlength{\parindent}{0cm}
+\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
+
 \newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}
 \newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}
+\newcolumntype{Y}{>{\centering\arraybackslash}X}
+
 \definecolor{cas}{HTML}{e6f0fe}
-\definecolor{shade1}{HTML}{ffffff}
-\definecolor{shade2}{HTML}{e6f2ff}
-\definecolor{shade3}{HTML}{cce2ff}
-\linespread{1.5}
-\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
-\newcommand{\tg}{\mathop{\mathrm{tg}}}
-\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
-\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
-\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
-\pgfplotsset{every axis/.append style={
-  axis x line=middle,    % centre axes
-  axis y line=middle,
-  axis line style={->},  % arrows on axes
-  xlabel={$x$},          % axes labels
-  ylabel={$y$},
-}}
+\definecolor{important}{HTML}{fc9871}
+\definecolor{highlight}{HTML}{ffb84d}
+\definecolor{dark-gray}{gray}{0.2}
+\definecolor{peach}{HTML}{e6beb2}
+\definecolor{lblue}{HTML}{e5e9f0}
+
+\newtcolorbox{cas}{colframe=cas!75!black, fonttitle=\sffamily\bfseries, title=On CAS, left*=3mm}
+\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=darkgray, fontupper=\sffamily\bfseries}
+\newtcolorbox{theorembox}[1]{colback=green!10!white, colframe=blue!20!white, coltitle=black, fontupper=\sffamily, fonttitle=\sffamily, #1}
+
 
 \begin{document}
 
 
 \begin{multicols}{2}
 
-  \section{Functions}
 
-  \begin{itemize}
-      \tightlist
-    \item vertical line test
-    \item each \(x\) value produces only one \(y\) value
-  \end{itemize}
+\section{Functions}
 
-  \subsection*{One to one functions}
+\begin{itemize} \tightlist
+  \item vertical line test
+  \item each \(x\) value produces only one \(y\) value
+\end{itemize}
 
-  \begin{itemize} \tightlist
-    \item
-      \(f(x)\) is \emph{one to one} if \(f(a) \ne f(b)\) if
-      \(a, b \in \operatorname{dom}(f)\) and \(a \ne b\)\\
-      \(\implies\) unique \(y\) for each \(x\) (\(\sin x\) is not 1:1,
-      \(x^3\) is)
-    \item
-      horizontal line test
-    \item
-      if not one to one, it is many to one
-  \end{itemize}
+\subsection*{One to one functions}
 
-      \subsection*{Odd and even functions}
+\begin{itemize} \tightlist
+  \item \(f(x)\) is 1:1 if \(f(a) \ne f(b) \> \forall \>\{a,b\} \in \operatorname{dom}(f)\) \\
+        \(\implies\) unique \(y\) for each \(x\)
+  \item e.g. \(\sin x\) is not 1:1, \(x^3\) is
+  \item horizontal line test
+  \item if not one to one, it is many to one
+\end{itemize}
 
-      \begin{align*}
-        \text{Even:}&& f(x)  &= f(-x) \\
-        \text{Odd:} && -f(x) &= f(-x)
-      \end{align*}
+\subsection*{Odd and even functions}
+
+\begin{align*}
+  \text{Even:}&& f(x)  &= f(-x) \\
+  \text{Odd:} && -f(x) &= f(-x)
+\end{align*}
+
+Even \(\implies\) symmetrical across \(y\)-axis \\
+\(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\
+For \(x^n\), parity of \(n \equiv\) parity of function
+
+\begin{tabularx}{\columnwidth}{XX}
+  \textbf{Even:} & \textbf{Odd:} \\
+  \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^2)};  \end{axis}\end{tikzpicture} &
+    \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)};  \end{axis}\end{tikzpicture}
+\end{tabularx}
+
+\subsection*{Inverse functions}
+
+\begin{itemize} \tightlist
+  \item Inverse of \(f(x)\) is denoted \(f^{-1}(x)\)
+  \item \(f\) must be one to one
+  \item If \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
+  \item Represents reflection across \(y=x\)
+  \item \(\implies f^{-1}(x)=f(x)\) intersections lie on \(y=x\)
+  \item \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1} \\
+    \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
+  \item ``Inverse'' \(\ne\) ``inverse \emph{function}'' (functions must pass vertical line test)\\
+\end{itemize}
 
-      Even \(\implies\) symmetrical across \(y\)-axis \\
-      \(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\
-      For \(x^n\), parity of \(n \equiv\) parity of function
+\subsubsection*{Finding \(f^{-1}\)}
 
-      \begin{tabularx}{\columnwidth}{XX}
-        \textbf{Even:} & \textbf{Odd:} \\
-        \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^2)};  \end{axis}\end{tikzpicture} &
-          \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)};  \end{axis}\end{tikzpicture}
-      \end{tabularx}
+\begin{enumerate} \tightlist
+  \item Let \(y=f(x)\)
+  \item Swap \(x\) and \(y\) (``take inverse''
+  \item Solve for \(y\) \\
+    Sqrt: state \(\pm\) solutions then restrict
+  \item State rule as \(f^{-1}(x)=\dots\)
+  \item For inverse \emph{function}, state in function notation
+\end{enumerate}
 
-  \subsection*{Inverse functions}
+\subsection*{Simultaneous equations (linear)}
 
-  \begin{itemize} \tightlist
-    \item Inverse of \(f(x)\) is denoted \(f^{-1}(x)\)
-    \item \(f\) must be one to one
-    \item If \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
-    \item Represents reflection across \(y=x\)
-    \item \(\implies f^{-1}(x)=f(x)\) intersections lie on \(y=x\)
-    \item \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1} \\
-      \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
-    \item ``Inverse'' \(\ne\) ``inverse \emph{function}'' (functions must pass vertical line test)\\
-  \end{itemize}
+\begin{itemize} \tightlist
+  \item \textbf{Unique solution} - lines intersect at point
+  \item \textbf{Infinitely many solutions} - lines are equal
+  \item \textbf{No solution} - lines are parallel
+\end{itemize}
 
-  \subsubsection*{Finding \(f^{-1}\)}
+\subsubsection*{Solving \(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) for \(\{0,1,\infty\}\) solutions}
+  where all coefficients are known except for one, and \(a, b\) are known
 
   \begin{enumerate} \tightlist
-    \item Let \(y=f(x)\)
-    \item Swap \(x\) and \(y\) (``take inverse''
-    \item Solve for \(y\) \\
-      Sqrt: state \(\pm\) solutions then restrict
-    \item State rule as \(f^{-1}(x)=\dots\)
-    \item For inverse \emph{function}, state in function notation
+    \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix}  \begin{bmatrix} x \\ y \end{bmatrix}  =  \begin{bmatrix} a \\ b \end{bmatrix}\)
+      \item Find \(\det(\text{first matrix}) = ps-qr\)
+      \item Let \(\det = 0\) for \(\{0,\infty\}\) solutions
+        or \(\det \ne 0\) for 1 solution
+      \item Solve to find variable \\ \\
+        \textbf{For infinite/no solutions:}
+      \item Substitute variable into both original equations
+      \item Rearrange so that LHS of each is the same
+      \item \(\begin{aligned}[t]
+          \infty \text{ solns: } & \text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x \\
+          0 \text{ solns: } & \text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x
+      \end{aligned}\)
   \end{enumerate}
-      
-  \subsection*{Simultaneous equations (linear)}
-
-  \begin{itemize} \tightlist
-    \item \textbf{Unique solution} - lines intersect at point
-    \item \textbf{Infinitely many solutions} - lines are equal
-    \item \textbf{No solution} - lines are parallel
-  \end{itemize}
-
-  \subsubsection*{Solving \(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) for \(\{0,1,\infty\}\) solutions}
-    where all coefficients are known except for one, and \(a, b\) are known
-
-    \begin{enumerate} \tightlist
-      \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix}  \begin{bmatrix} x \\ y \end{bmatrix}  =  \begin{bmatrix} a \\ b \end{bmatrix}\)
-        \item Find determinant of first matrix: \(\Delta = ps-qr\)
-        \item Let \(\Delta = 0\) for number of solutions \(\ne 1\)\\
-          or let \(\Delta \ne 0\) for one unique solution.
-        \item Solve determinant equation to find variable \\
-          \textbf{For infinite/no solutions:}
-        \item Substitute variable into both original equations
-        \item Rearrange equations so that LHS of each is the same
-        \item \(\text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x\) (\(\infty\) solns)\\
-          \(\text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x\) (0 solns)
-    \end{enumerate}
-
-    \colorbox{cas}{On CAS:} Matrix \(\rightarrow\) \texttt{det}
-
-    \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
-
-      \begin{itemize} \tightlist
-        \item Use elimination
-        \item Generate two new equations with only two variables
-        \item Rearrange \& solve
-        \item Substitute one variable into another equation to find another variable
-      \end{itemize}
 
-\subsection*{Piecewise functions}
+  \begin{cas}
+    Action \(\rightarrow\) Matrix \(\rightarrow\) Calculation \(\rightarrow\) \texttt{det}
+  \end{cas}
 
-\[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\]
+  \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
 
-\textbf{Open circle:} point included\\
-\textbf{Closed circle:} point not included
+    \begin{itemize} \tightlist
+      \item Use elimination
+      \item Generate two new equations with only two variables
+      \item Rearrange \& solve
+      \item Substitute one variable into another equation to find another variable
+    \end{itemize}
 
-\subsection*{Operations on functions}
+    \subsection*{Piecewise functions}
 
-For \(f \pm g\) and \(f \times g\):
-\quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\)
+    \[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\]
 
-Addition of linear piecewise graphs: add \(y\)-values at key points
+      \textbf{Open circle:} point included\\
+      \textbf{Closed circle:} point not included
 
-Product functions:
+\begin{cas}
+  Define piecewise functions: \\
+  \-\hspace{1em}Math3 \(\rightarrow\)
+  \begin{tikzpicture}%
+    \draw rectangle (0.5,0.5); 
+    \node at (0.08,0.25) {\(\{\)};
+    \filldraw [black] (0.15, 0.4) rectangle(0.25, 0.3);
+    \draw (0.35, 0.4) rectangle(0.45, 0.3);
+    \node [font=\footnotesize] at (0.3,0.3) {\verb;,;};
+    \draw (0.15, 0.2) rectangle(0.25, 0.1);
+    \node [font=\footnotesize] at (0.3,0.1) {\verb;,;};
+    \draw (0.35, 0.2) rectangle(0.45, 0.1);
+  \end{tikzpicture}
+  % TODO: finish this section
+\end{cas}
 
-\begin{itemize}
-\tightlist
-\item
-  product will equal 0 if \(f=0\) or \(g=0\)
-\item
-  \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\)
-\end{itemize}
+      \subsection*{Operations on functions}
 
-\subsection*{Composite functions}
+      For \(f \pm g\) and \(f \times g\):
+      \quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\)
 
-\((f \circ g)(x)\) is defined iff
-\(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\)
+      Addition of linear piecewise graphs: add \(y\)-values at key points
 
+      Product functions:
+
+      \begin{itemize}
+          \tightlist
+        \item
+          product will equal 0 if \(f=0\) or \(g=0\)
+        \item
+          \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\)
+      \end{itemize}
 
-      \pgfplotsset{every axis/.append style={ ticks=none, xlabel=, ylabel=, }} % remove axis labels & ticks
-      \begin{table*}[ht]
+      \subsection*{Composite functions}
+
+      \((f \circ g)(x)\) is defined iff
+      \(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\)
+
+      \pgfplotsset{
+        blank/.append style={%
+          enlargelimits=true,
+          ticks=none,
+          yticklabels={,,}, xticklabels={,,},
+          xlabel=, ylabel=,
+          scale=0.4,
+          samples=100, smooth, unbounded coords=jump
+        }
+      }
+      \tikzset{
+        blankplot/.append style={orange, mark=none}
+      }
+
+      \begin{figure*}[ht]
         \centering
-        \begin{tabu} to \textwidth {@{} X[0.3,r] *2{|X[c,m]}@{}}
-          & \(n\) is even & \(n\) is odd \\ \tabucline{1pt} 
-          \(x^n, n \in \mathbb{Z}^+\) & 
-          \vspace{1em}\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^2)};  \end{axis}\end{tikzpicture} &
-            \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^3)};  \end{axis}\end{tikzpicture} \\
-              \(x^n, n \in \mathbb{Z}^-\) &
-              \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-4,  xmax=4, ymax=8, ymin=-0, scale=0.4, smooth] \addplot[orange, mark=none, samples=100] {(x^(-2))};  \end{axis}\end{tikzpicture} &
-                \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none, domain=-3:-0.1] {(x^(-1))}; \addplot[orange, mark=none, domain=0.1:3] {(x^(-1))};  \end{axis}\end{tikzpicture} \\
-                  \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) &
-                  \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-1,  xmax=5, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^(1/2))};  \end{axis}\end{tikzpicture} &
-                    \begin{tikzpicture}
-                      \begin{axis}[enlargelimits=false, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, ymin=-3, ymax=3, smooth, scale=0.4]
-                        \addplot [orange,domain=-2:2,samples=1000,no markers] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) };
-                      \end{axis}
-                    \end{tikzpicture}
-        \end{tabu}
-        \hrule
-      \end{table*}
-      \pgfplotsset{every axis/.append style={ xlabel=\(x\), ylabel=\(y\) }} % put axis labels back
+
+        \begin{tabularx}{\textwidth}{|r|Y|Y|}
+
+          \hline
+          \rowcolor{lblue}
+          & \(n\) is even & \(n\) is odd \\ \hline
+
+          \centering \(x^n, n \in \mathbb{Z}^+\) & 
+
+          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+            \begin{axis}[blank, xmin=-3,  xmax=3]
+              \addplot[blankplot] {(x^2)};
+            \end{axis}
+          \end{tikzpicture}} &
+
+          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+            \begin{axis}[blank, xmin=-3,  xmax=3]
+              \addplot[blankplot, domain=-3:3] {(x^3)};
+            \end{axis}
+          \end{tikzpicture}} \\ \hline
+
+          \centering \(x^n, n \in \mathbb{Z}^-\) &
+
+          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+            \begin{axis}[blank, xmin=-4, xmax=4, ymax=8, ymin=-0]
+              \addplot[blankplot, samples=100] {(x^(-2))};
+            \end{axis}
+          \end{tikzpicture}} &
+
+          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+            \begin{axis}[blank, xmin=-3, xmax=3]
+              \addplot[blankplot, domain=-3:-0.1] {(x^(-1))};
+              \addplot[blankplot, domain=0.1:3] {(x^(-1))};
+            \end{axis}
+          \end{tikzpicture}} \\ \hline
+
+          \centering \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) &
+
+          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+            \begin{axis}[blank, xmin=-1,  xmax=5]
+              \addplot[blankplot] {(x^(1/2))};
+            \end{axis}
+          \end{tikzpicture}} &
+
+          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+            \begin{axis}[blank, xmin=-3, xmax=3, ymin=-3, ymax=3]
+              \addplot [blankplot, domain=-2:2] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) };
+            \end{axis}
+          \end{tikzpicture}} \\ \hline
+
+        \end{tabularx}
+      \end{figure*}
 
       \section{Polynomials}
 
+      \subsection*{Factor theorem}
+
+      \begin{theorembox}{title=General form \(\beta x + \alpha\)}
+        If \(\beta x + \alpha\) is a factor of \(P(x)\), \\
+        \-\hspace{1em}then \(P(-\dfrac{\alpha}{\beta})=0\).
+      \end{theorembox}
+
+      \begin{theorembox}{title=Simple form \(x-a\)}
+        If \((x-a)\) is a factor of \(P(x)\), remainder \(R=0\). \\
+        \-\hspace{1em}\(\implies P(a)=0\)
+      \end{theorembox}
+
+      \subsection*{Remainder theorem}
+
+      \begin{theorembox}{}
+        When \(P(x)\) is divided by \(\beta x + \alpha\), the remainder is \(-\dfrac{\alpha}{\beta}\).
+      \end{theorembox}
+
+      \subsection*{Rational root theorem}
+      Let \(P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0\) be a polynomial of degree \(n\) with \(a_i \in \mathbb{Z} \forall a\). Let \(\alpha, \beta \in \mathbb{Z}\) such that their highest common factor is 1 (i.e. relatively prime).
+
+      If \(\beta x + \alpha\) is a factor of \(P(x)\), then \(\beta\) divides \(a_n\) and \(\alpha\) divides \(a_0\) .
+
+      \subsubsection*{Discriminant}
+      \[\begin{cases}
+        b^2-4ac > 0 & \text{two solutions} \\
+        b^2-4ac = 0 & \text{one solution} \\
+        b^2-4ac < 0 & \text{no solutions}
+      \end{cases}\]
+      \begin{warning}
+        Flip inequality sign when multiplying by -1
+      \end{warning}
+
+      \subsection*{Long division}
+
+      \[ \polylongdiv{x^2+2x+4}{x-1} \]
+
+      \begin{cas}
+        Action \(\rightarrow\) Transformation \(\rightarrow\) \texttt{propFrac}
+      \end{cas}
+
       \subsection*{Linear equations}
 
       \subsubsection*{Forms}
@@ -237,8 +384,11 @@ Product functions:
       Distance: \(|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
 
       \subsection*{Quadratics}
+
       \setlength{\abovedisplayskip}{1pt}
       \setlength{\belowdisplayskip}{1pt}
+
+      \textbf{Linear factorisation}
       \[ x^2 + bx + c = (x+m)(x+n) \]
       \hfill where \(mn=c, \> m+n=b\)
 
@@ -292,5 +442,8 @@ Product functions:
       \input{circ-functions}
       \input{calculus}
 
+      \subfile{statistics-ref}
+
     \end{multicols}
-  \end{document}
+
+\end{document}