+---
+geometry: margin=2cm
+author: Andrew Lorimer
+---
+
# Transformation
-## $f(x) = x^n$ to $f(x)=a(x-h)^n+K$##
+**Order of operations:** DRT - Dilations, Reflections, Translations
+
+## Transforming $x^n$ to $a(x-h)^n+K$
- $|a|$ is the dilation factor of $|a|$ units parallel to $y$-axis or from $x$-axis
- if $a<0$, graph is reflected over $x$-axis
- $k$ - translation of $k$ units parallel to $y$-axis or from $x$-axis
-- $h$ - translation of $h$ units parallel to $x$-axis or from $y$-axis
\ No newline at end of file
+- $h$ - translation of $h$ units parallel to $x$-axis or from $y$-axis
+- for $(ax)^n$, dilation factor is $1 \over a$ parallel to $x$-axis or from $y$-axis
+- when $0 < |a| < 1$, graph becomes closer to axis
+
+## Translations
+
+For $y = f(x)$, these processes are equivalent:
+
+- applying the translation $(x, y) \rightarrow (x + h, y + k)$ to the graph of $y = f(x)$
+- replacing $x$ with $x − h$ and $y$ with $y − k$ to obtain $y − k = f (x − h)$
+
+## Dilations
+
+For the graph of $y = f(x)$, there are two pairs of equivalent processes:
+
+1. - Dilating from $x$-axis: $(x, y) \rightarrow (x, by)$
+ - Replacing $y$ with $y \over b$ to obtain $y = b f(x)$
+
+2. - Dilating from $y$-axis: $(x, y) \rightarrow (ax, y)$
+ - Replacing $x$ with $x \over a$ to obtain $y = f({x \over a})$
+
+For graph of $y={1 \over x}$, horizontal & vertical dilations are equivalent (symmetrical). If $y={a \over x}$, graph is contracted rather than dilated.
+
+## Transforming $f(x)$ to $y=Af[n(x+c)]+b$#
+
+Applies to exponential, log, trig, power, polynomial functions.
+Functions must be written in form $y=Af[n(x+c)] + b$
+
+$A$ - dilation by factor $A$ from $x$-axis (if $A<0$, reflection across $y$-axis)
+$n$ - dilation by factor $1 \over n$ from $y$-axis (if $n<0$, reflection across $x$-axis)
+$c$ - translation from $y$-axis ($x$-shift)
+$b$ - translation from $x$-axis ($y$-shift)
+
+## Power functions
+
+**Strictly increasing:** $f(x_2) > f(x_1)$ where $x_2 > x_1$ (including $x=0$)
+
+### Odd and even functions
+Even when $f(x) = -f(x)$
+Odd when $-f(x) = f(-x)$
+
+Function is even if it can be reflected across $y$-axis $\implies f(x)=f(-x)$
+Function $x^{\pm {p \over q}}$ is odd if $q$ is odd
+
+### $x^n$ where $n \in \mathbb{Z}^+$
+
+| $n$ is even: | $n$ is odd: |
+| ------------ | ----------- |
+|![](graphics/parabola.png){#id .class width=20%} | ![](graphics/cubic.png){#id .class width=20%} |
+
+### $x^n$ where $n \in \mathbb{Z}^-$
+
+| $n$ is even: | $n$ is odd: |
+| ------------ | ----------- |
+|![](graphics/truncus.png){#id .class width=20%} | ![](graphics/hyperbola.png){#id .class width=20%} |
+
+### $x^{1 \over n}$ where $n \in \mathbb{Z}^+$
+
+| $n$ is even: | $n$ is odd: |
+| ------------ | ----------- |
+|![](graphics/square-root-graph.png){#id .class width=20%} | ![](graphics/cube-root-graph.png){#id .class width=20%} |
+
+
+### $x^{-1 \over n}$ where $n \in \mathbb{Z}^+$
+
+Mostly only on CAS.
+
+We can write $x^{-1 \over n} = {1 \over {x^{1 \over n}}} = {1 \over ^n \sqrt{x}}$n.
+Domain is: $\begin{cases} \mathbb{R} \setminus \{0\}\hspace{0.5em} \text{ if }n\text{ is odd} \\ \mathbb{R}^+ \hspace{2.6em}\text{if }n\text{ is even}\end{cases}$
+
+If $n$ is odd, it is an odd function.
+
+### $x^{p \over q}$ where $p, q \in \mathbb{Z}^+$
+
+$$x^{p \over q} = \sqrt[q]{x^p}$$
+
+- if $p > q$, the shape of $x^p$ is dominant
+- if $p < q$, the shape of $x^{1 \over q}$ is dominant
+- points $(0, 0)$ and $(1, 1)$ will always lie on graph
+- Domain is: $\begin{cases} \mathbb{R} \hspace{4em}\text{ if }q\text{ is odd} \\ \mathbb{R}^+ \cup \{0\} \hspace{1em}\text{if }q\text{ is even}\end{cases}$
+
+
+## Combinations of functions (piecewise/hybrid)
+
+$$\text{e.g.}\quad f(x)=\begin{cases} ^3 \sqrt{x}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}$$
+
+Open circle - point included
+Closed circle - point not included
+
+### Sum, difference, product of functions
+| | | |
+|---|-----|-----|
+|sum|$f+g$|domain $= \text{dom}(f) \cap \text{dom}(g)$|
+|difference|$f-g$ or $g-f$|domain $=\text{dom}(f) \cap \text{dom}(g)$|
+|product|$f \times g$|domain $=\text{dom}(f) \cap \text{dom}(g)$|
+
+Addition of linear piecewise graphs - add $y$-values at key points
+
+Product functions:
+
+- product will equal 0 if one of the functions is equal to 0
+- turning point on one function does not equate to turning point on product
+
+## Matrix transformations
+
+Find new point $(x^\prime, y^\prime)$. Substitute these into original equation to find image with original variables $(x, y)$.
+
+## Composite functions
+
+$(f \circ g)(x)$ is defined iff $\operatorname{ran}(g) \subseteq \operatorname{dom}(f)$
+
+