[spec] reorganise notes for sac
[notes.git] / spec / dynamics.tex
index 5891f4e7195bc967116ba2e5f1aaf8e22b49f49b..b6a1af8cd718e464c8be211f60add75fc9525b33 100644 (file)
-\documentclass[a4paper, tikz, pstricks]{article}
-\usepackage[a4paper,margin=2cm]{geometry}
-\usepackage{array}
-\usepackage{amsmath}
-\usepackage{amssymb}
-\usepackage{tcolorbox}
-\usepackage{fancyhdr}
-\usepackage{pgfplots}
-\usepackage{tikz}
-\usetikzlibrary{arrows,
-    calc,
-    decorations,
-    scopes,
-    angles
-}
-\usetikzlibrary{calc}
-\usetikzlibrary{angles}
-\usetikzlibrary{datavisualization.formats.functions}
-\usetikzlibrary{decorations.markings}
-\usepgflibrary{arrows.meta}
-\usetikzlibrary{decorations.markings}
-\usepgflibrary{arrows.meta}
-\usepackage{pst-plot}
-\psset{dimen=monkey,fillstyle=solid,opacity=.5}
-\def\object{%
-    \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
-    \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
-    \rput{*0}{%
-        \psline{->}(0,-2)%
-        \uput[-90]{*0}(0,-2){$\vec{w}$}}
-}
-
-\usepackage{tabularx}
-\usetikzlibrary{angles}
-\usepackage{keystroke}
-\usepackage{listings}
-\usepackage{xcolor} % used only to show the phantomed stuff
-\definecolor{cas}{HTML}{e6f0fe}
-
-\pagestyle{fancy}
-\fancyhead[LO,LE]{Year 12 Specialist - Dynamics}
-\fancyhead[CO,CE]{Andrew Lorimer}
-
-\setlength\parindent{0pt}
-
+\documentclass[spec-collated.tex]{subfiles}
 \begin{document}
 
-\title{Dynamics}
-\author{}
-\date{}
-\maketitle
+\section{Dynamics}
 
-\section{Resolution of forces}
+\subsection*{Resolution of forces}
 
 \textbf{Resultant force} is sum of force vectors
 
-\subsection*{In angle-magnitude form}
+\subsubsection*{In angle-magnitude form}
 
 \makebox[3cm]{Cosine rule:} \(c^2=a^2+b^2-2ab\cos\theta\)
 \makebox[3cm]{Sine rule:} \(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\)
 
-\subsection*{In \(\boldsymbol{i}\)---\(\boldsymbol{j}\) form}
+\subsubsection*{In \(\boldsymbol{i}\)---\(\boldsymbol{j}\) form}
 
 Vector of \(a\) N at \(\theta\) to \(x\) axis is equal to \(a \cos \theta \boldsymbol{i} + a \sin \theta \boldsymbol{j}\). Convert all force vectors then add.
 
 To find angle of an \(a\boldsymbol{i} + b\boldsymbol{j}\) vector, use \(\theta = \tan^{-1} \frac{b}{a}\)
 
-\subsection*{Resolving in a given direction}
+\subsubsection*{Resolving in a given direction}
 
 The resolved part of a force \(P\) at angle \(\theta\) is has magnitude \(P \cos \theta\)
 
 To convert force \(||\vec{OA}\) to angle-magnitude form, find component \(\perp\vec{OA}\) then \(|\boldsymbol{r}|=\sqrt{\left(||\vec{OA}\right)^2 + \left(\perp\vec{OA}\right)^2},\quad \theta = \tan^{-1}\dfrac{\perp\vec{OA}}{||\vec{OA}}\)
 
-\section{Newton's laws}
+\subsection*{Newton's laws}
 
 \begin{tcolorbox}
-  \begin{enumerate}
-    \item Velocity is constant without a net external velocity
+  \begin{enumerate}[leftmargin=1mm]
+    \item Velocity is constant without a net external force
     \item \(\frac{d}{dt} \rho \propto \Sigma F \implies \boldsymbol{F}=m\boldsymbol{a}\)
     \item Equal and opposite forces
   \end{enumerate}
 \end{tcolorbox}
 
-\subsection*{Weight}
+\subsubsection*{Weight}
 A mass of \(m\) kg has force of \(mg\) acting on it
 
-\subsection*{Momentum \(\rho\)}
+\subsubsection*{Momentum \(\rho\)}
 \[ \rho = mv \tag{units kg m/s or Ns} \]
 
-\subsection*{Reaction force \(R\)}
+\subsubsection*{Reaction force \(R\)}
 
 \begin{itemize}
   \item With no vertical velocity, \(R=mg\)
-  \item With upwards acceleration, \(R-mg=ma\)
+  \item With vertical acceleration, \(|R|=m|a|-mg\)
   \item With force \(F\) at angle \(\theta\), then \(R=mg-F\sin\theta\)
 \end{itemize}
 
-\subsection*{Friction}
+\subsubsection*{Friction}
 
 \[ F_R = \mu R \tag{friction coefficient} \]
 
-\section{Inclined planes}
+\subsection*{Inclined planes}
 
 \[ \boldsymbol{F} = |\boldsymbol{F}| \cos \theta \boldsymbol{i} + |\boldsymbol{F}| \sin \theta \boldsymbol{j} \]
 \begin{itemize}
@@ -122,9 +75,7 @@ A mass of \(m\) kg has force of \(mg\) acting on it
   pulley/.style={thick}
 }
 
-\begin{figure}[!htb]
-  \centering
-  \begin{tikzpicture}
+  \begin{center}\begin{tikzpicture}
 
     \pgfmathsetmacro{\Fnorme}{2}
     \pgfmathsetmacro{\Fangle}{30}
@@ -153,17 +104,9 @@ A mass of \(m\) kg has force of \(mg\) acting on it
     \end{scope}
     \draw[force,->] (M.center) -- ++(0,-1) node[below] {$mg$};
     \draw (M.center)+(-90:\arcr) arc [start angle=-90,end angle=\iangle-90,radius=\arcr] node [below, pos=.5] {\footnotesize\(\theta\)};
-  \end{tikzpicture}
-\end{figure}
+  \end{tikzpicture}\end{center}
 
-\section{Connected particles}
-
-\begin{itemize}
-  \item \textbf{Suspended pulley:} tension in both sections of rope are equal
-  \item \textbf{Linear connection:} find acceleration of system first
-  \item \textbf{Pulley on right angle:} \(a = \frac{m_2g}{m_1+m_2}\) where \(m_2\) is suspended (frictionless on both surfaces)
-  \item \textbf{Pulley on edge of incline:} find downwards force \(W_2\) and components of mass on plane
-\end{itemize}
+\subsection*{Connected particles}
 
 \def\boxwidth{0.5}
 \tikzset{
@@ -172,8 +115,7 @@ A mass of \(m\) kg has force of \(mg\) acting on it
 }
 
 
-\begin{figure}[!htb]
-  \centering
+\begin{center}
   \begin{tikzpicture}
 
     \matrix[column sep=1cm] {
@@ -231,22 +173,68 @@ A mass of \(m\) kg has force of \(mg\) acting on it
       \\
     };
   \end{tikzpicture}
-\end{figure}
+  \end{center}
+
+\begin{itemize}
+  \item \textbf{Suspended pulley:} tension in both sections of rope are equal \\
+    \(|a| = g \frac{m_1 - m_2}{m_1 + m_2}\) where \(m_1\) accelerates down \\
+    With tension: \\
+    \[ \begin{cases}m_1 g - T = m_1 a\\ T - m_2 g = m_2 a\end{cases} \\ \implies m_1 g - m_2 g = m_1 a + m_2 a \]
+  \item \textbf{String pulling mass on inclined pane:} Resolve parallel to plane \\
+    \[ T-mg \sin \theta = ma \]
+  \item \textbf{Linear connection:} find acceleration of system first
+  \item \textbf{Pulley on right angle:} \(a = \frac{m_2g}{m_1+m_2}\) where \(m_2\) is suspended (frictionless on both surfaces)
+  \item \textbf{Pulley on edge of incline:} find downwards force \(W_2\) and components of mass on plane
+\end{itemize}
+
+\hspace{2em}\parbox{8em}{In this example, note \(T_1 \ne T_2\):}
+  \begin{tikzpicture}
+
+      \begin{scope}
 
-\section{Equilibrium}
+        \coordinate (O) at (0,0);
+        \coordinate (A) at ($({3*cos(\iangle)},{3*sin(\iangle)})$);
+        \coordinate (B) at ($({3*cos(\iangle)},0)$);
+        \coordinate (C) at ($({(1-0.25*\boxwidth)*cos(\iangle)},{(1-0.25*\boxwidth)*sin(\iangle)})$); % centre of box
+        \coordinate (D) at ($(C)+(\iangle:\boxwidth)$);
+        \coordinate (E) at ($(D)+(90+\iangle:0.5*\boxwidth)$);
+        \coordinate (F) at ($(B)+(0,{1.5*sin(\iangle)})$);
+        \coordinate (G) at ($(A)+(\iangle:-2*\boxwidth)$);
+        \coordinate (H) at ($(G)+(90+\iangle:0.5*\boxwidth)$);
+        \coordinate (I) at ($(H)+(\iangle:-0.5*\boxwidth)$);
+        \coordinate (J) at ($(H)+(\iangle:\boxwidth)$);
+        \coordinate (X) at ($(A)+(\iangle:0.5*\boxwidth)$); % centre of pulley
+        \coordinate (Y) at ($(X)+(90+\iangle:0.5*\boxwidth)$); % chord of pulley
+
+        \draw[plane] (O) -- (A) -- (B) -- (O);
+        \draw (O)+(\arcr,0) arc [start angle=0,end angle=\iangle,radius=\arcr] node [right, pos=.75] {\footnotesize\(\theta\)};
+
+        \draw [rotate=\iangle, m] (C) rectangle ++(\boxwidth,\boxwidth) node (z) [rotate=\iangle, midway, font=\footnotesize] {\(m_1\)};
+        \draw [rotate=\iangle, m] (G) rectangle ++(\boxwidth,\boxwidth) node (l) [rotate=\iangle, midway, font=\footnotesize] {\(m_2\)};
+        \draw [pulley] (A) -- (X) ++(0.5*\boxwidth, 0) arc[rotate=\iangle, start angle=0, delta angle=360, x radius=0.25, y radius=0.25] node(r) [midway, rotate=\iangle] {};
+        \draw [string] (E) -- (H) node [midway, above, font=\footnotesize, rotate=\iangle] {\(T_2\)};
+        \draw [string] (J) -- (Y) node [midway, above, font=\footnotesize, rotate=\iangle] {\(T_1\)} arc (90+\iangle:0:0.25) -- ++($(0,{-1.5*sin(\iangle)})$) node [midway, above right, font=\footnotesize] {\(T_1\)} node[m] {\(m_3\)};
+
+      \end{scope}
+
+  \end{tikzpicture}
+\subsection*{Equilibrium}
 
 \[ \dfrac{A}{\sin a} = \dfrac{B}{\sin b} = \dfrac{C}{\sin c} \tag{Lami's theorem}\]
+\[ c^2 = a^2 + b^2 - 2ab \cos \theta \tag{cosine rule} \]
 
 Three methods:
 \begin{enumerate}
   \item Lami's theorem (sine rule)
-  \item Triangle of forces or CAS (use to verify)
+  \item Triangle of forces (cosine rule)
   \item Resolution of forces (\(\Sigma F = 0\) - simultaneous)
 \end{enumerate}
 
-\colorbox{cas}{On CAS:} use Geometry, lock known constants.
+  \begin{cas}
+    \textbf{To verify:} Geometry tab, then select points with normal cursor. Click right arrow at end of toolbar and input point, then lock known constants.
+  \end{cas}
 
-\section{Variable forces (DEs)}
+\subsection*{Variable forces (DEs)}
 
 \[ a = \dfrac{d^2x}{dt^2} = \dfrac{dv}{dt} = v\dfrac{dv}{dx} = \dfrac{d}{dx} \left( \frac{1}{2} v^2 \right) \]