update practice exams
[notes.git] / spec / calculus.md
index 2b68bf5692bec02045cdccc1b1d81146c69ecd72..3ed01c3fa748c39df9f0f503d883f99f11d24975 100644 (file)
@@ -54,14 +54,14 @@ Can also be used with functions, where $h=\delta x$.
 
 $$f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={dy \over dx}$$
 
-$$m_{\operatorname{tangent}}=\lim_{h \rightarrow 0}f^\prime(x)$$
+$$m_{\tan}=\lim_{h \rightarrow 0}f^\prime(x)$$
 
 
 
-$$m_{\operatorname{chord PQ}}=f^\prime(x)$$
+$$m_{\vec{PQ}}=f^\prime(x)$$
 
 first principles derivative:
-$${m_{\operatorname{tangent at P}} =\lim_{h \rightarrow 0}}{{f(x+h)-f(x)}\over h}$$
+$${m_{\text{tangent at }P} =\lim_{h \rightarrow 0}}{{f(x+h)-f(x)}\over h}$$
 
 ## Gradient at a point
 
@@ -95,15 +95,14 @@ $$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
 
 ## Chain rule for $(f\circ g)$
 
-$$(f \circ g)^\prime = (f^\prime \circ g) \cdot g^\prime$$
+If $f(x) = h(g(x)) = (h \circ g)(x)$:
 
-Leibniz notation:
+$$f^\prime(x) = h^\prime(g(x)) \cdot g^\prime(x)$$
 
-$${dy \over dx} = {dy \over du} \cdot {du \over dx}$$
-
-Function notation:
+If $y=h(u)$ and $u=g(x)$:
 
-$$(f\circ g)^\prime(x)=f^\prime(g(x))g^\prime(x),\quad \mathbb{where}\hspace{0.3em} (f\circ g)(x)=f(g(x))$$
+$${dy \over dx} = {dy \over du} \cdot {du \over dx}$$
+$${d((ax+b)^n) \over dx} = {d(ax+b) \over dx} \cdot n \cdot (ax+b)^{n-1}$$
 
 Used with only one expression.
 
@@ -113,22 +112,15 @@ ${du \over dx} = 2x$
 $y=u^7$  
 ${dy \over du} = 7u^6$  
 
-
-$7u^6 \times$
-
 ## Product rule for $y=uv$
 
 $${dy \over dx} = u{dv \over dx} + v{du \over dx}$$
 
-Surds can be left on denomintaors.
-
 ## Quotient rule for $y={u \over v}$
 
 $${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$$
 
-If $f(x)={u(x) \over v(x)}$, then $f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)} \over [v(x)]^2}$
-
-If $y={u(x) \over v(x)}$, then derivative ${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$
+$$f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)} \over [v(x)]^2}$$
 
 ## Logarithms
 
@@ -138,20 +130,28 @@ Wikipedia:
 
 > the logarithm of a given number $x$ is the exponent to which another fixed number, the base $b$, must be raised, to produce that number $x$
 
-### Logarithmic identities  
+### Logarithmic identities
+
 $\log_b (xy)=\log_b x + \log_b y$  
 $\log_b x^n = n \log_b x$  
 $\log_b y^{x^n} = x^n \log_b y$
 
+### Index identities
+
+$b^{m+n}=b^m \cdot b^n$  
+$(b^m)^n=b^{m \cdot n}$  
+$(b \cdot c)^n = b^n \cdot c^n$  
+${a^m \div a^n} = {a^{m-n}}$
+
 ### $e$ as a logarithm
 
-$$\log_e e = 1$$
+$$\operatorname{if} y=e^x, \quad \operatorname{then} x=\log_e y$$
 $$\ln x = \log_e x$$
 
 ### Differentiating logarithms
-$${d \over dx} \log_b x = {1 \over x \ln b}$$
+$${d(\log_e x)\over dx} = x^{-1} = {1 \over x}$$
 
-## Solving $e^x$
+## Derivative rules
 
 | $f(x)$ | $f^\prime(x)$ |
 | ------ | ------------- |
@@ -159,8 +159,267 @@ $${d \over dx} \log_b x = {1 \over x \ln b}$$
 | $\sin ax$ | $a\cos ax$ |
 | $\cos x$ | $-\sin x$ |
 | $\cos ax$ | $-a \sin ax$ |
+| $\tan f(x)$ | $f^2(x) \sec^2f(x)$ |
 | $e^x$ | $e^x$ |
 | $e^{ax}$ | $ae^{ax}$ |
+| $ax^{nx}$ | $an \cdot e^{nx}$ |
 | $\log_e x$ | $1 \over x$ |
 | $\log_e {ax}$ | $1 \over x$ |
+| $\log_e f(x)$ | $f^\prime (x) \over f(x)$ |
+| $\sin(f(x))$ | $f^\prime(x) \cdot \cos(f(x))$ |
+| $\sin^{-1} x$ | $1 \over {\sqrt{1-x^2}}$ |
+| $\cos^{-1} x$ | $-1 \over {sqrt{1-x^2}}$ |
+| $\tan^{-1} x$ | $1 \over {1 + x^2}$ |
+
+## Reciprocal derivatives
+
+$${1 \over {dy \over dx}} = {dx \over dy}$$
+
+## Differentiating $x=f(y)$
+
+Find $dx \over dy$. Then ${dx \over dy} = {1 \over {dy \over dx}} \implies {dy \over dx} = {1 \over {dx \over dy}}$.
+
+$${dy \over dx} = {1 \over {dx \over dy}}$$
+
+## Second derivative
+
+$$f(x) \longrightarrow f^\prime (x) \longrightarrow f^{\prime\prime}(x)$$
+
+$$\therefore y \longrightarrow {dy \over dx} \longrightarrow {d({dy \over dx}) \over dx} \longrightarrow {d^2 y \over dx^2}$$
+
+Order of polynomial $n$th derivative decrements each time the derivative is taken
+
+### Points of Inflection
+
+*Stationary point* - point of zero gradient (i.e. $f^\prime(x)=0$)  
+*Point of inflection* - point of maximum $|$gradient$|$ (i.e.  $f^{\prime\prime} = 0$)
+
+* if $f^\prime (a) = 0$ and $f^{\prime\prime}(a) > 0$, then point $(a, f(a))$ is a local min (curve is concave up)
+* if $f^\prime (a) = 0$ and $f^{\prime\prime} (a) < 0$, then point $(a, f(a))$ is local max (curve is concave down)
+* if $f^{\prime\prime}(a) = 0$, then point $(a, f(a))$ is a point of inflection
+  + if also $f^\prime(a)=0$, then it is a stationary point of inflection
+
+![](graphics/second-derivatives.png)
+
+## Implicit Differentiation
+
+**On CAS:** Action $\rightarrow$ Calculation $\rightarrow$ `impDiff(y^2+ax=5, x, y)`. Returns $y^\prime= \dots$.
+
+Used for differentiating circles etc.
+
+If $p$ and $q$ are expressions in $x$ and $y$ such that $p=q$, for all $x$ nd $y$, then:
+
+$${dp \over dx} = {dq \over dx} \quad \text{and} \quad {dp \over dy} = {dq \over dy}$$
+
+## Integration
+
+$$\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)$$
+
+$$\int x^n \cdot dx = {x^{n+1} \over n+1} + c$$
+
+- area enclosed by curves
+- $+c$ should be shown on each step without $\int$
+
+### Integral laws
+
+$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$  
+$\int k f(x) dx = k \int f(x) dx$  
+
+| $f(x)$                          | $\int f(x) \cdot dx$         |
+| ------------------------------- | ---------------------------- |
+| $k$ (constant) | $kx + c$ |
+| $x^n$ | ${x^{n+1} \over {n+1}} + c$ |
+| $a x^{-n}$ | $a \cdot \log_e x + c$ |
+| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ |
+| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ |
+| $e^{kx}$ | ${1 \over k} e^{kx} + c$ |
+| $e^k$ | $e^kx + c$ |
+| $\sin kx$ | $-{1 \over k} \cos (kx) + c$ |
+| $\cos kx$ | ${1 \over k} \sin (kx) + c$ |
+| $\sec^2 kx$ | ${1 \over k} \tan(kx) + c$ |
+| $1 \over \sqrt{a^2-x^2}$ | $\sin^{-1} {x \over a} + c \>\vert\> a>0$ |
+| $-1 \over \sqrt{a^2-x^2}$ | $\cos^{-1} {x \over a} + c \>\vert\> a>0$ |
+| $a \over {a^2-x^2}$ | $\tan^{-1} {x \over a} + c$ |
+| ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ |
+| $g^\prime(x)\cdot f^\prime(g(x)$ | $f(g(x))$ (chain rule)|
+| $f(x) \cdot g(x)$ | $\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx$ |
+
+Note $\sin^{-1} {x \over a} + \cos^{-1} {x \over a}$ is constant for all $x \in (-a, a)$.
+
+### Definite integrals
+
+$$\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)$$
+
+- Signed area enclosed by: $\> y=f(x), \quad y=0, \quad x=a, \quad x=b$.
+- *Integrand* is $f$.
+- $F(x)$ may be any integral, i.e. $c$ is inconsequential
+
+#### Properties
+
+$$\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx$$
+
+$$\int^a_a f(x) \> dx = 0$$
+
+$$\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx$$
+
+$$\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx$$
+
+$$\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx$$
+
+### Integration by substitution
+
+$$\int f(u) {du \over dx} \cdot dx = \int f(u) \cdot du$$
+
+Note $f(u)$ must be one-to-one $\implies$ one $x$ value for each $y$ value
+
+e.g. for $y=\int(2x+1)\sqrt{x+4} \cdot dx$:  
+let $u=x+4$  
+$\implies {du \over dx} = 1$  
+$\implies x = u - 4$  
+then $y=\int (2(u-4)+1)u^{1 \over 2} \cdot du$  
+Solve as a normal integral
+
+#### Definite integrals by substitution
+
+For $\int^b_a f(x) {du \over dx} \cdot dx$, evaluate new $a$ and $b$ for $f(u) \cdot du$.
+
+### Trigonometric integration
+
+$$\sin^m x \cos^n x \cdot dx$$
+
+**$m$ is odd:**  
+$m=2k+1$ where $k \in \mathbb{Z}$  
+$\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x$  
+Substitute $u=\cos x$
+
+**$n$ is odd:**  
+$n=2k+1$ where $k \in \mathbb{Z}$  
+$\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x$  
+Subbstitute $u=\sin x$
+
+**$m$ and $n$ are even:**  
+Use identities:
+
+- $\sin^2x={1 \over 2}(1-\cos 2x)$
+- $\cos^2x={1 \over 2}(1+\cos 2x)$
+- $\sin 2x = 2 \sin x \cos x$
+
+## Partial fractions
+
+On CAS: Action $\rightarrow$ Transformation $\rightarrow$ `expand/combine`  
+or Interactive $\rightarrow$ Transformation $\rightarrow$ `expand` $\rightarrow$ Partial
+
+## Graphing integrals on CAS
+
+In main: Interactive $\rightarrow$ Calculation $\rightarrow$ $\int$ ($\rightarrow$ Definite)  
+Restrictions: `Define f(x)=...` $\rightarrow$ `f(x)|x>1` (e.g.)
+
+## Applications of antidifferentiation
+
+- $x$-intercepts of $y=f(x)$ identify $x$-coordinates of stationary points on $y=F(x)$
+- nature of stationary points is determined by sign of $y=f(x)$ on either side of its $x$-intercepts
+- if $f(x)$ is a polynomial of degree $n$, then $F(x)$ has degree $n+1$
+
+To find stationary points of a function, substitute $x$ value of given point into derivative. Solve for ${dy \over dx}=0$. Integrate to find original function.
+
+## Solids of revolution
+
+Approximate as sum of infinitesimally-thick cylinders
+
+### Rotation about $x$-axis
+
+\begin{align*}
+  V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\
+    &= \pi \int^b_a (f(x))^2 \> dx
+\end{align*}
+
+### Rotation about $y$-axis
+
+\begin{align*}
+  V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\
+    &= \pi \int^b_a (f(y))^2 \> dy
+\end{align*}
+
+### Regions not bound by $y=0$
+
+$$V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx$$  
+where $f(x) > g(x)$
+
+## Length of a curve
+
+$$L = \int^b_a \sqrt{1 + ({dy \over dx})^2} \> dx \quad \text{(Cartesian)}$$
+
+$$L = \int^b_a \sqrt{{dx \over dt} + ({dy \over dt})^2} \> dt \quad \text{(parametric)}$$
+
+Evaluate on CAS. Or use Interactive $\rightarrow$ Calculation $\rightarrow$ Line $\rightarrow$ `arcLen`.
+
+## Rates
+
+### Related rates
+
+$${da \over db} \quad \text{(change in } a \text{ with respect to } b)$$
+
+### Gradient at a point on parametric curve
+
+$${dy \over dx} = {{dy \over dt} \div {dx \over dt}} \> \vert \> {dx \over dt} \ne 0$$
+
+$${d^2 \over dx^2} = {d(y^\prime) \over dx} = {{dy^\prime \over dt} \div {dx \over dt}} \> \vert \> y^\prime = {dy \over dx}$$
+
+## Rational functions
+
+$$f(x) = {P(x) \over Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}$$
+
+### Addition of ordinates
+
+- when two graphs have the same ordinate, $y$-coordinate is double the ordinate
+- when two graphs have opposite ordinates, $y$-coordinate is 0 i.e. ($x$-intercept)
+- when one of the ordinates is 0, the resulting ordinate is equal to the other ordinate
+
+## Fundamental theorem of calculus
+
+If $f$ is continuous on $[a, b]$, then
+
+$$\int^b_a f(x) \> dx = F(b) - F(a)$$
+
+where $F$ is any antiderivative of $f$
+
+## Differential equations
+
+One or more derivatives
+
+**Order** - highest power inside derivative  
+**Degree** - highest power of highest derivative  
+e.g. ${\left(dy^2 \over d^2 x\right)}^3$: order 2, degree 3
+
+### Verifying solutions
+
+Start with $y=\dots$, and differentiate. Substitute into original equation.
+
+### Function of the dependent variable
+
+If ${dy \over dx}=g(y)$, then ${dx \over dy} = 1 \div {dy \over dx} = {1 \over g(y)}$. Integrate both sides to solve equation. Only add $c$ on one side. Express $e^c$ as $A$.
+
+### Mixing problems
+
+$$\left({dm \over dt}\right)_\Sigma = \left({dm \over dt}\right)_{\text{in}} - \left({dm \over dt}\)_{\text{out}}$$
+
+### Separation of variables
+
+If ${dy \over dx}=f(x)g(y)$, then:
+
+$$\int f(x) \> dx = \int {1 \over g(y)} \> dy$$
+
+### Using definite integrals to solve DEs
+
+Used for situations where solutions to ${dy \over dx} = f(x)$ is not required.
+
+In some cases, it may not be possible to obtain an exact solution.
+
+Approximate solutions can be found by numerically evaluating a definite integral.
+
+### Using Euler's method to solve a differential equation
+
+$${{f(x+h) - f(x)} \over h } \approx f^\prime (x) \quad \text{for small } h$$
+
+$$\implies f(x+h) \approx f(x) + hf^\prime(x)$$