\usepackage{harpoon}
\usepackage{tabularx}
\usepackage[dvipsnames, table]{xcolor}
+\usepackage{blindtext}
\usepackage{graphicx}
\usepackage{wrapfig}
\usepackage{tikz}
-\usepackage{tikz-3dplot}
+\usepackage{tikz-3dplot}
+\usepackage{pgfplots}
\usetikzlibrary{calc}
\usetikzlibrary{angles}
+\usetikzlibrary{datavisualization.formats.functions}
+\usetikzlibrary{decorations.markings}
\usepgflibrary{arrows.meta}
\usepackage{fancyhdr}
\pagestyle{fancy}
\begin{itemize}
\item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)}
\item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)}
- \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)}
+ \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)\\Geometric: equidistant from \(a,b\)}
\end{itemize}
\subsubsection*{Circles}
\begin{itemize}
\item \(|z-z_1|^2=c^2|z_2+2|^2\)
- \item \(|z-(a+bi)|=c\)
+ \item \(|z-(a+bi)|=c \implies (x-a)^2+_(y-b)^2=c^2\)
\end{itemize}
\noindent \textbf{Loci} \qquad \(\operatorname{Arg}(z)<\theta\)
\draw [gray, dashed, thick] (2.5,0.5) -- (2.5,2.5) node [pos=0.5] {\midarrow};
\end{scope}
\node[black, right] at (2.5,1.5) {\(y\vec{j}\)};
-
\end{tikzpicture}\end{center}
-
\subsection*{Column notation}
\[\begin{bmatrix}x\\ y \end{bmatrix} \iff x\boldsymbol{i} + y\boldsymbol{j}\]
\begin{itemize}
\item Draw each vector head to tail then join lines
\item Addition is commutative (parallelogram)
- \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v})\)
+ \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v}) \implies \overrightharp{AB}=\boldsymbol{b}-\boldsymbol{a}\)
\end{itemize}
\subsection*{Magnitude}
\subsection*{Angle between vectors}
-\[\cos \theta = {{\boldsymbol{a} \cdot \frac{\boldsymbol{b}}{|\boldsymbol{a}| |\boldsymbol{b}|}} = {\frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}| |\boldsymbol{b}|}}\]
+\[\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}| |\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}| |\boldsymbol{b}|}\]
\noindent \colorbox{cas}{On CAS:} \texttt{angle([a b c], [a b c])}
\end{tikzpicture}
\subsubsection*{\(\parallel\boldsymbol{b}\) (vector projection/resolute)}
+
\begin{align*}
- \boldsymbol{u}&={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}\\
- &=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)\\
- &=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}
+ \boldsymbol{u} & = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|^2}\boldsymbol{b} \\
+ & = \left(\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\right)\left(\frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right) \\
+ & = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}
\end{align*}
\subsubsection*{\(\perp\boldsymbol{b}\) (perpendicular projection)}
&=\boldsymbol{a}+m\boldsymbol{b}-m\boldsymbol{a}\\
&=(1-m)\boldsymbol{a}+m{b}
\end{align*}
-
\begin{align*}
\text{Also, } \implies \overrightharp{OC} &= \lambda \vec{OA} + \mu \overrightharp{OB} \\
\text{where } \lambda + \mu &= 1\\
\end{align*}
+\subsubsection*{Parallelograms}
+
+\begin{center}\begin{tikzpicture}
+ \coordinate (O) at (0,0) node [below left] {\(O\)};
+ \coordinate (A) at (4,0);
+ \coordinate (B) at (6,2);
+ \coordinate (C) at (2,2);
+ \coordinate (D) at (6,0);
+
+ \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (O)--(A) node [below left] {\(A\)};
+ \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (A)--(B) node [above right] {\(B\)};
+ \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (B)--(C) node [above left] {\(C\)};
+ \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (C)--(O);
+
+ \draw [gray, dashed] (O) -- (B) node [pos=0.75] {\(\diagdown\diagdown\)} node [pos=0.25] {\(\diagdown\diagdown\)};
+ \draw [gray, dashed] (A) -- (C) node [pos=0.75] {\(\diagup\)} node [pos=0.25] {\(\diagup\)};
+ \begin{scope}
+ \path[clip] (C) -- (A) -- (O);
+ \fill[orange, opacity=0.5, draw=black] (0,0) circle (4mm);
+ \node at ($(0,0)+(20:8mm)$) {\(\theta\)};
+ \end{scope}
+ \draw [gray, thick, dotted] (B) -- (D) node [pos=0.5, right, black, font=\footnotesize] {\(|\boldsymbol{c}|\sin\theta\)} (A) -- (D) node [pos=0.5, below, black, font=\footnotesize] {\(|\boldsymbol{c}|\cos\theta\)};
+ \draw pic [draw,thick,red,angle radius=2mm] {right angle=O--D--B};
+\end{tikzpicture}\end{center}
+
+\begin{itemize}
+ \item
+ Diagonals \(\overrightharp{OB}, \overrightharp{AC}\) bisect each other
+ \item
+ If diagonals are equal length, it is a rectangle
+ \item
+ \(|\overrightharp{OB}|^2 + |\overrightharp{CA}|^2 = |\overrightharp{OA}|^2 + |\overrightharp{AB}|^2 + |\overrightharp{CB}|^2 + |\overrightharp{OC}|^2\)
+ \item
+ Area \(=\boldsymbol{c} \cdot \boldsymbol{a}\)
+\end{itemize}
+
\subsubsection*{Useful vector properties}
\begin{itemize}
If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at
least one point in common, then they lie on the same straight line
\item
- Two vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are
- perpendicular if \(\boldsymbol{a} \cdot \boldsymbol{b}=0\)
+ \(\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b}=0\)
\item
\(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\)
\end{itemize}
\subsection*{Linear dependence}
-Vectors \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly
-dependent if they are non-parallel and:
-
-\[k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c} = 0\]
-\[\therefore \boldsymbol{c} = m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}\]
+\(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly dependent if they are \(\nparallel\) and:
+\begin{align*}
+ 0&=k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c}\\
+ \therefore \boldsymbol{c} &= m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}
+\end{align*}
-\(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
+\noindent \(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
independent if no vector in the set is expressible as a linear
combination of other vectors in set, or if they are parallel.
-Vector \(\boldsymbol{w}\) is a linear combination of vectors
-\(\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}\)
-
\subsection*{Three-dimensional vectors}
Right-hand rule for axes: \(z\) is up or out of page.
Parametric equation of line through point \((x_0, y_0, z_0)\) and
parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is:
-\begin{equation}\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\end{equation}
+\[\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\]
\section{Circular functions}
-Period of \(a\sin(bx)\) is \(\frac{{2\pi}{b}\)
+\(\sin(bx)\) or \(\cos(bx)\): period \(=\frac{2\pi}{b}\)
-Period of \(a\tan(nx)\) is \(\frac{\pi}{n}\)\\
-Asymptotes at \(x=\frac{2k+1)\pi}{2n} \> \vert \> k \in \mathbb{Z}\)
+\noindent \(\tan(nx)\): period \(=\frac{\pi}{n}\)\\
+\indent\indent\indent asymptotes at \(x=\frac{(2k+1)\pi}{2n} \> \vert \> k \in \mathbb{Z}\)
\subsection*{Reciprocal functions}
\subsubsection*{Cosecant}
-\begin{figure}
-\centering
-\includegraphics{graphics/csc.png}
-\caption{}
-\end{figure}
-
\[\operatorname{cosec} \theta = \frac{1}{\sin \theta} \> \vert \> \sin \theta \ne 0\]
\begin{itemize}
-\tightlist
\item
\textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\)
\item
\textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
\item
\textbf{Turning points} at
- \(\theta = {\frac{(2n + 1)\pi}{2} \> \vert \> n \in \mathbb{Z}\)
+ \(\theta = \frac{(2n + 1)\pi}{2} \> \vert \> n \in \mathbb{Z}\)
\item
\textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
\end{itemize}
\subsubsection*{Secant}
-\begin{figure}
-\centering
-\includegraphics{graphics/sec.png}
-\caption{}
-\end{figure}
+
+\begin{center}\includegraphics[width=0.7\columnwidth]{graphics/sec.png}\end{center}
\[\operatorname{sec} \theta = \frac{1}{\cos \theta} \> \vert \> \cos \theta \ne 0\]
\begin{itemize}
-\tightlist
+
\item
\textbf{Domain}
- \(= \mathbb{R} \setminus \{{{(2n + 1) \pi} \over 2 } : n \in \mathbb{Z}\}\)
+ \(= \mathbb{R} \setminus \frac{(2n + 1) \pi}{2} : n \in \mathbb{Z}\}\)
\item
\textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
\item
\(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
\item
\textbf{Asymptotes} at
- \(\theta = {{(2n + 1) \pi} \over 2} \> \vert \> n \in \mathbb{Z}\)
+ \(\theta = \frac{(2n + 1) \pi}{2} \> \vert \> n \in \mathbb{Z}\)
\end{itemize}
\subsubsection*{Cotangent}
-\begin{figure}
-\centering
-\includegraphics{graphics/cot.png}
-\caption{}
-\end{figure}
+\begin{center}\includegraphics[width=0.7\columnwidth]{graphics/cot.png}\end{center}
\[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\]
\begin{itemize}
-\tightlist
+
\item
\textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\)
\item
\subsubsection*{Symmetry properties}
-\begin{equation}\begin{split}
+\[\begin{split}
\operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
\operatorname{sec} (-x) & = \operatorname{sec} x \\
\operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
\operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
\operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
\operatorname{cot} (-x) & = - \operatorname{cot} x
-\end{split}\end{equation}
+\end{split}\]
\subsubsection*{Complementary properties}
-\begin{equation}\begin{split}
+\[\begin{split}
\operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
\operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
\operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
\tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
-\end{split}\end{equation}
+\end{split}\]
\subsubsection*{Pythagorean identities}
-\begin{equation}\begin{split}
+\[\begin{split}
1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
-\end{split}\end{equation}
+\end{split}\]
\subsection*{Compound angle formulas}
\subsection*{Double angle formulas}
-\begin{equation}\begin{split}
+\[\begin{split}
\cos 2x &= \cos^2 x - \sin^2 x \\
& = 1 - 2\sin^2 x \\
& = 2 \cos^2 x -1
-\end{split}\end{equation}
+\end{split}\]
\[\sin 2x = 2 \sin x \cos x\]
\subsection*{Inverse circular functions}
Inverse functions: \(f(f^{-1}(x)) = x, \quad f(f^{-1}(x)) = x\)\\
-Must be 1:1 to find inverse (reflection in \(y=x\)
-
+Must be 1:1 to find inverse (reflection in \(y=x\)).\\
Domain is restricted to make functions 1:1.
-\subsubsection*{\(\arcsin\)}
-
-\[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y, \quad \text{where } \sin y = x \text{ and } y \in [{-\pi \over 2}, {\pi \over 2}]\]
+\[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y\]
+\hfill where \(\sin y = x, \> y \in [{-\pi \over 2}, {\pi \over 2}]\)
-\subsubsection*{\(\arccos\)}
+\[\cos^{-1}: [-1,1] \rightarrow \mathbb{R}, \quad \cos^{-1} x = y\]
+\hfill where \(\cos y = x, \> y \in [0, \pi]\)
-\[\cos^{-1} \rightarrow \mathbb{R}, \quad \cos^{-1} x = y, \quad \text{where } \cos y = x \text{ and } y \in [0, \pi]\]
-
-\subsubsection*{\(\arctan\)}
-
-\[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y, \quad \text{where } \tan y = x \text{ and } y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\]
+\[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y\]
+\hfill where \(\tan y = x, \> y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\)
\section{Differential calculus}
\subsection*{Limits}
\[\lim_{x \rightarrow a}f(x)\]
+\(L^-,\quad L^+\) \qquad limit from below/above\\
+\(\lim_{x \to a} f(x)\) \quad limit of a point\\
-\(L^-\) - limit from below
-
-\(L^+\) - limit from above
-
-\(\lim_{x \to a} f(x)\) - limit of a point
-
-\begin{itemize}
-\item
- Limit exists if \(L^-=L^+\)
-\item
- If limit exists, point does not.
-\item
- For solving \(x\rightarrow\infty\), factorise so that all \(x\) terms are in denominators\\
+\noindent For solving \(x\rightarrow\infty\), put all \(x\) terms in denominators\\
e.g. \[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\]
- \item
-Limits can be solved using normal techniques (if div 0, factorise)
-\end{itemize}
+\subsubsection*{Limit theorems}
\begin{enumerate}
\item
\(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\)
\item
\(\therefore \lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) constant
-\ite
+\item
\({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\)
\item
-A function is continuous if \(L^-=L^+=f(x)\) for all values of \(x\).
+ \(f(x)\) is continuous \(\iff L^-=L^+=f(x) \> \forall x\)
\end{enumerate}
-\subsection{Gradients of secants and tangents}
+\subsection*{Gradients of secants and tangents}
\textbf{Secant (chord)} - line joining two points on curve\\
\textbf{Tangent} - line that intersects curve at one point
-\(m\left(\overrightharp{PQ}\right){m_{PQ}}={\operatorname{rise} \over \operatorname{run}} = {\delta y \over \delta x} \text{ for } P(x,y),\quad Q(x+\delta x, y+ \delta y)\)
-
-As \(Q \rightarrow P, \delta x \rightarrow 0\). Chord becomes tangent
-(two infinitesimal points are equal).
-
-\subsection{First principles derivative}
+\subsection*{First principles derivative}
\[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
\(\log_b x^n = n \log_b x\)\\
\(\log_b y^{x^n} = x^n \log_b y\)
-\subsubsection*{Index identities}}
+\subsubsection*{Index identities}
\(b^{m+n}=b^m \cdot b^n\)\\
\((b^m)^n=b^{m \cdot n}\)\\
\((b \cdot c)^n = b^n \cdot c^n\)\\
\({a^m \div a^n} = {a^{m-n}}\)
-\subsubsection{\texorpdfstring{\(e\) as a
-logarithm}{e as a logarithm}}\label{e-as-a-logarithm}
-
-\[\operatorname{if} y=e^x, \quad \operatorname{then} x=\log_e y\]
-\[\ln x = \log_e x\]
-
\subsection*{Derivative rules}
-\begin{longtable}[]{@{}ll@{}}
-\toprule
-\(f(x)\) & \(f^\prime(x)\)\tabularnewline
-\midrule
-\endhead
-\(\sin x\) & \(\cos x\)\tabularnewline
-\(\sin ax\) & \(a\cos ax\)\tabularnewline
-\(\cos x\) & \(-\sin x\)\tabularnewline
-\(\cos ax\) & \(-a \sin ax\)\tabularnewline
-\(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\tabularnewline
-\(e^x\) & \(e^x\)\tabularnewline
-\(e^{ax}\) & \(ae^{ax}\)\tabularnewline
-\(ax^{nx}\) & \(an \cdot e^{nx}\)\tabularnewline
-\(\log_e x\) & \(1 \over x\)\tabularnewline
-\(\log_e {ax}\) & \(1 \over x\)\tabularnewline
-\(\log_e f(x)\) & \(f^\prime (x) \over f(x)\)\tabularnewline
-\(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\tabularnewline
-\(\sin^{-1} x\) & \(1 \over {\sqrt{1-x^2}}\)\tabularnewline
-\(\cos^{-1} x\) & \(-1 \over {sqrt{1-x^2}}\)\tabularnewline
-\(\tan^{-1} x\) & \(1 \over {1 + x^2}\)\tabularnewline
-\bottomrule
-\end{longtable}
+\renewcommand{\arraystretch}{1.4}
+\begin{tabularx}{\columnwidth}{rX}
+ \hline
+\(f(x)\) & \(f^\prime(x)\)\\
+\hline
+\(\sin x\) & \(\cos x\)\\
+\(\sin ax\) & \(a\cos ax\)\\
+\(\cos x\) & \(-\sin x\)\\
+\(\cos ax\) & \(-a \sin ax\)\\
+\(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\\
+\(e^x\) & \(e^x\)\\
+\(e^{ax}\) & \(ae^{ax}\)\\
+\(ax^{nx}\) & \(an \cdot e^{nx}\)\\
+ \(\log_e x\) & \(\dfrac{1}{x}\)\\
+ \(\log_e {ax}\) & \(\dfrac{1}{x}\)\\
+ \(\log_e f(x)\) & \(\dfrac{f^\prime (x)}{f(x)}\)\\
+\(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\\
+ \(\sin^{-1} x\) & \(\dfrac{1}{\sqrt{1-x^2}}\)\\
+ \(\cos^{-1} x\) & \(\dfrac{-1}{sqrt{1-x^2}}\)\\
+ \(\tan^{-1} x\) & \(\dfrac{1}{1 + x^2}\)\\
+ \hline
+\end{tabularx}
\subsection*{Reciprocal derivatives}
\[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
\subsection*{Differentiating \(x=f(y)\)}
-
-Find \(\frac{dx}{dy}\). Then:
-
\begin{align*}
- {\frac{dx}{dy}} =& {1 \over {\frac{dy}{dx}}} \\
- \implies {\frac{dy}{dx}} &= {1 \over {\frac{dx}{dy}}}\).
-
-\[{\frac{dy}{dx}} = {1 \over {\frac{dx}{dy}}}\]
-
-\subsection*{Second derivative}}
-
-\[f(x) \longrightarrow f^\prime (x) \longrightarrow f^{\prime\prime}(x)\]
+ \text{Find }& \frac{dx}{dy}\\
+ \text{Then, }\frac{dx}{dy} &= \frac{1}{\frac{dy}{dx}} \\
+ \implies {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}\\
+ \therefore {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}
+\end{align*}
-\[\therefore y \longrightarrow {\frac{dy}{dx}} \longrightarrow {d({\frac{dy}{dx}}) \over dx} \longrightarrow {d^2 y \over dx^2}\]
+\subsection*{Second derivative}
+\begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\
+\implies y \longrightarrow &\frac{dy}{dx} \longrightarrow \frac{d^2 y}{dx^2}\end{align*}
-Order of polynomial \(n\)th derivative decrements each time the
-derivative is taken
+\noindent Order of polynomial \(n\)th derivative decrements each time the derivative is taken
\subsubsection*{Points of Inflection}
-\emph{Stationary point} - point of zero gradient (i.e.
-\(f^\prime(x)=0\))\\
-\emph{Point of inflection} - point of maximum \(|\)gradient\(|\) (i.e.
+\emph{Stationary point} - i.e.
+\(f^\prime(x)=0\)\\
+\emph{Point of inflection} - max \(|\)gradient\(|\) (i.e.
\(f^{\prime\prime} = 0\))
-
+%\begin{table*}[ht]
+%\centering
+% \begin{tabularx}{\textwidth}{XXXX}
+%\hline
+% \rowcolor{shade2}
+% & \(\dfrac{d^2 y}{dx^2} > 0\) & \(\dfrac{d^2y}{dx^2}<0\) & \(\dfrac{d^2y}{dx^2}=0\) (inflection) \\
+%\hline
+% \(\frac{dy}{dx}>0\) & \begin{tikzpicture} \draw[domain=1:2,smooth,variable=\x,blue] plot ({\x},{(1/10)*\x*\x*\x}) plot ({\x},{0.675*\x-0.677}); \end{tikzpicture} & cell 3\\
+%cell 1 & cell 2 & cell 3\\
+%\hline
+%\end{tabularx}
+%\end{table*}
\begin{itemize}
-\tightlist
+
\item
if \(f^\prime (a) = 0\) and \(f^{\prime\prime}(a) > 0\), then point
\((a, f(a))\) is a local min (curve is concave up)
if also \(f^\prime(a)=0\), then it is a stationary point of inflection
\end{itemize}
-\begin{figure}
-\centering
-\includegraphics{graphics/second-derivatives.png}
-\caption{}
-\end{figure}
+\begin{table*}[ht]
+ \centering
+ \includegraphics[width=0.7\textwidth]{graphics/second-derivatives.png}
+\end{table*}
\subsection*{Implicit Differentiation}
-\textbf{On CAS:} Action \(\rightarrow\) Calculation \(\rightarrow\)
-\texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}. Returns \(y^\prime= \dots\).
-
-Used for differentiating circles etc.
+\noindent Used for differentiating circles etc.
If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\),
-for all \(x\) nd \(y\), then:
+for all \(x\) and \(y\), then:
\[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\]
+\noindent \colorbox{cas}{\textbf{On CAS:}}\\
+Action \(\rightarrow\) Calculation \(\rightarrow\) \texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}\\
+Returns \(y^\prime= \dots\).
+
\subsection*{Integration}
\[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
-\[\int x^n \cdot dx = {x^{n+1} \over n+1} + c\]
-
-\begin{itemize}
-\tightlist
-\item
- area enclosed by curves
-\item
- \(+c\) should be shown on each step without \(\int\)
-\end{itemize}
-
-\subsubsection*{Integral laws}
-
-\(\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx\)\\
-\(\int k f(x) dx = k \int f(x) dx\)
-
-\begin{longtable}[]{@{}ll@{}}
-\toprule
-\begin{minipage}[b]{0.42\columnwidth}\raggedright\strut
-\(f(x)\)\strut
-\end{minipage} & \begin{minipage}[b]{0.38\columnwidth}\raggedright\strut
-\(\int f(x) \cdot dx\)\strut
-\end{minipage}\tabularnewline
-\midrule
-\endhead
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\(k\) (constant)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\(kx + c\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\(x^n\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\({x^{n+1} \over {n+1}} + c\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\(a x^{-n}\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\(a \cdot \log_e x + c\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\({1 \over {ax+b}}\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\({1 \over a} \log_e (ax+b) + c\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\((ax+b)^n\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\({1 \over {a(n+1)}}(ax+b)^{n-1} + c\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\(e^{kx}\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\({1 \over k} e^{kx} + c\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\(e^k\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\(e^kx + c\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\(\sin kx\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\(-{1 \over k} \cos (kx) + c\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\(\cos kx\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\({1 \over k} \sin (kx) + c\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\(\sec^2 kx\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\({1 \over k} \tan(kx) + c\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\(1 \over \sqrt{a^2-x^2}\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\(\sin^{-1} {x \over a} + c \>\vert\> a>0\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\(-1 \over \sqrt{a^2-x^2}\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\(\cos^{-1} {x \over a} + c \>\vert\> a>0\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\(a \over {a^2-x^2}\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\(\tan^{-1} {x \over a} + c\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\({f^\prime (x)} \over {f(x)}\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\(\log_e f(x) + c\)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\(g^\prime(x)\cdot f^\prime(g(x)\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\(f(g(x))\) (chain rule)\strut
-\end{minipage}\tabularnewline
-\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
-\(f(x) \cdot g(x)\)\strut
-\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
-\(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\strut
-\end{minipage}\tabularnewline
-\bottomrule
-\end{longtable}
-
-Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant for
-all \(x \in (-a, a)\).
-
-\subsubsection*{Definite integrals}}
+\subsection*{Integral laws}
+
+\renewcommand{\arraystretch}{1.4}
+\begin{tabularx}{\columnwidth}{rX}
+\hline
+ \(f(x)\) & \(\int f(x) \cdot dx\) \\
+ \hline
+ \(k\) (constant) & \(kx + c\)\\
+ \(x^n\) & \(\dfrac{1}{n+1} x^{n+1}\) \\
+ \(a x^{-n}\) &\(a \cdot \log_e x + c\)\\
+ \(\dfrac{1}{ax+b}\) &\(\dfrac{1}{a} \log_e (ax+b) + c\)\\
+ \((ax+b)^n\) & \(\dfrac{1}{a(n+1)}(ax+b)^{n-1} + c\)\\
+ \(e^{kx}\) & \(\dfrac{1}{k} e^{kx} + c\)\\
+ \(e^k\) & \(e^kx + c\)\\
+ \(\sin kx\) & \(\dfrac{-1}{k} \cos (kx) + c\)\\
+ \(\cos kx\) & \(\frac{1}{k} \sin (kx) + c\)\\
+ \(\sec^2 kx\) & \(\frac{1}{k} \tan(kx) + c\)\\
+ \(\dfrac{1}{\sqrt{a^2-x^2}}\) & \(\sin^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
+ \(\dfrac{-1}{\sqrt{a^2-x^2}}\) & \(\cos^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
+ \(\frac{a}{a^2-x^2}\) & \(\tan^{-1} \frac{x}{a} + c\)\\
+ \(\frac{f^\prime (x)}{f(x)}\) & \(\log_e f(x) + c\)\\
+ \(g^\prime(x)\cdot f^\prime(g(x)\) & \(f(g(x))\) (chain rule)\\
+ \(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\\
+ \hline
+\end{tabularx}
+
+Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant \(\forall x \in (-a, a)\)
+
+\subsection*{Definite integrals}
\[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\]
\begin{itemize}
-\tightlist
+
\item
- Signed area enclosed by:
+ Signed area enclosed by\\
\(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\).
\item
\emph{Integrand} is \(f\).
-\item
- \(F(x)\) may be any integral, i.e. \(c\) is inconsequential
\end{itemize}
-\paragraph{Properties}\label{properties}
+\subsubsection*{Properties}
\[\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx\]
\[\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx\]
-\subsubsection{Integration by substitution}
+\subsection*{Integration by substitution}
\[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\]
-Note \(f(u)\) must be one-to-one \(\implies\) one \(x\) value for each
-\(y\) value
-
-e.g.~for \(y=\int(2x+1)\sqrt{x+4} \cdot dx\):\\
-let \(u=x+4\)\\
-\(\implies {\frac{du}{dx}} = 1\)\\
-\(\implies x = u - 4\)\\
-then \(y=\int (2(u-4)+1)u^{1 \over 2} \cdot du\)\\
-Solve as a normal integral
+\noindent Note \(f(u)\) must be 1:1 \(\implies\) one \(x\) for each \(y\)
+\begin{align*}\text{e.g. for } y&=\int(2x+1)\sqrt{x+4} \cdot dx\\
+ \text{let } u&=x+4\\
+ \implies& {\frac{du}{dx}} = 1\\
+ \implies& x = u - 4\\
+ \text{then } &y=\int (2(u-4)+1)u^{\frac{1}{2}} \cdot du\\
+ &\text{(solve as normal integral)}
+\end{align*}
\subsubsection*{Definite integrals by substitution}
For \(\int^b_a f(x) {\frac{du}{dx}} \cdot dx\), evaluate new \(a\) and
\(b\) for \(f(u) \cdot du\).
-\subsubsection{Trigonometric integration}
+\subsubsection*{Trigonometric integration}
\[\sin^m x \cos^n x \cdot dx\]
-\textbf{\(m\) is odd:}\\
+\paragraph{\textbf{\(m\) is odd:}}
\(m=2k+1\) where \(k \in \mathbb{Z}\)\\
\(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\
Substitute \(u=\cos x\)
-\textbf{\(n\) is odd:}\\
+\paragraph{\textbf{\(n\) is odd:}}
\(n=2k+1\) where \(k \in \mathbb{Z}\)\\
\(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\
-Subbstitute \(u=\sin x\)
+Substitute \(u=\sin x\)
-\textbf{\(m\) and \(n\) are even:}\\
-Use identities:
+\paragraph{\textbf{\(m\) and \(n\) are even:}}
+use identities...
\begin{itemize}
-\tightlist
+
\item
\(\sin^2x={1 \over 2}(1-\cos 2x)\)
\item
\subsection*{Partial fractions}
-On CAS: Action \(\rightarrow\) Transformation \(\rightarrow\)
+\colorbox{cas}{On CAS:}\\
+\indent Action \(\rightarrow\) Transformation \(\rightarrow\)
\texttt{expand/combine}\\
-or Interactive \(\rightarrow\) Transformation \(\rightarrow\)
-\texttt{expand} \(\rightarrow\) Partial
+\indent Interactive \(\rightarrow\) Transformation \(\rightarrow\)
+Expand \(\rightarrow\) Partial
\subsection*{Graphing integrals on CAS}
-In main: Interactive \(\rightarrow\) Calculation \(\rightarrow\)
+\colorbox{cas}{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\)
\(\int\) (\(\rightarrow\) Definite)\\
-Restrictions: \texttt{Define\ f(x)=...} \(\rightarrow\)
-\texttt{f(x)\textbar{}x\textgreater{}1} (e.g.)
+Restrictions: \texttt{Define\ f(x)=..} then \texttt{f(x)\textbar{}x\textgreater{}..}
-\subsection{Applications of antidifferentiation}
+\subsection*{Applications of antidifferentiation}
\begin{itemize}
-\tightlist
+
\item
\(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of
stationary points on \(y=F(x)\)
point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find
original function.
-\subsection*{Solids of revolution}}
+\subsection*{Solids of revolution}
Approximate as sum of infinitesimally-thick cylinders
-\subsubsection{Rotation about \(x\)-axis}
+\subsubsection*{Rotation about \(x\)-axis}
\begin{align*}
V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\
&= \pi \int^b_a (f(x))^2 \> dx
\end{align*}
-\subsubsection{Rotation about \(y\)-axis}
+\subsubsection*{Rotation about \(y\)-axis}
\begin{align*}
V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\
&= \pi \int^b_a (f(y))^2 \> dy
\end{align*}
-\subsubsection{Regions not bound by\(y=0\)}
+\subsubsection*{Regions not bound by \(y=0\)}
-\[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]\\
-where \(f(x) > g(x)\)
+\[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]
+\hfill where \(f(x) > g(x)\)
\subsection*{Length of a curve}
\[L = \int^b_a \sqrt{{\frac{dx}{dt}} + ({\frac{dy}{dt}})^2} \> dt \quad \text{(parametric)}\]
-Evaluate on CAS. Or use Interactive \(\rightarrow\) Calculation
-\(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}.
+\noindent \colorbox{cas}{On CAS:}\\
+\indent Evaluate formula,\\
+\indent or Interactive \(\rightarrow\) Calculation
+\(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}
\subsection*{Rates}
-\subsubsection*{Related rates}
-
-\[{\frac{da}{db}} \quad \text{(change in } a \text{ with respect to } b)\]
-
-\subsubsection{Gradient at a point on parametric curve}
+\subsubsection*{Gradient at a point on parametric curve}
\[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0\]
\subsubsection*{Addition of ordinates}
\begin{itemize}
-\tightlist
+
\item
when two graphs have the same ordinate, \(y\)-coordinate is double the
ordinate
other ordinate
\end{itemize}
-\subsection{Fundamental theorem of calculus}
+\subsection*{Fundamental theorem of calculus}
If \(f\) is continuous on \([a, b]\), then
\[\int^b_a f(x) \> dx = F(b) - F(a)\]
+\hfill where \(F = \int f \> dx\)
-where \(F\) is any antiderivative of \(f\)
-
-\subsection*{Differential equations}}
-
-One or more derivatives
+\subsection*{Differential equations}
-\textbf{Order} - highest power inside derivative\\
+\noindent\textbf{Order} - highest power inside derivative\\
\textbf{Degree} - highest power of highest derivative\\
-e.g. \({\left(\frac{dy^2}{d^2} x\right)}^3\): order 2, degree 3
+e.g. \({\left(\dfrac{dy^2}{d^2} x\right)}^3\) \qquad order 2, degree 3
\subsubsection*{Verifying solutions}
Start with \(y=\dots\), and differentiate. Substitute into original
equation.
-\subsubsection{Function of the dependent
-variable}\label{function-of-the-dependent-variable}
+\subsubsection*{Function of the dependent
+variable}
If \({\frac{dy}{dx}}=g(y)\), then
-\(\frac{{dx}{dy} = 1 \div {\frac{dy}{dx}} = \frac{1}{g(y)}\). Integrate
-both sides to solve equation. Only add \(c\) on one side. Express
+\(\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}\). Integrate both sides to solve equation. Only add \(c\) on one side. Express
\(e^c\) as \(A\).
\subsubsection*{Mixing problems}
-\[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left({\frac{dm}{dt}\)_{\text{out}}\]
+\[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left(\frac{dm}{dt}_{\text{out}}\right)\]
\subsubsection*{Separation of variables}
\[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\]
-\subsubsection{Using definite integrals to solve DEs}
-
-Used for situations where solutions to \({\frac{dy}{dx}} = f(x)\) is not
-required.
-
-In some cases, it may not be possible to obtain an exact solution.
-
-Approximate solutions can be found by numerically evaluating a definite
-integral.
-
-\subsubsection{Using Euler's method to solve a differential equation}
+\subsubsection*{Euler's method for solving DEs}
\[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]