---
+geometry: margin=2cm
+<!-- columns: 2 -->
+graphics: yes
+tables: yes
+author: Andrew Lorimer
+classoption: twocolumn
header-includes:
- - \documentclass{standalone}
- - \usepackage{cleveref}
- - \usepackage{harpoon}
- - \usepackage{accent} \newcommand{\vect}[1]{\accentset{\rightharpoonup}{#1}}
+- \usepackage{harpoon}
+- \usepackage{amsmath}
+- \pagenumbering{gobble}
+
---
# Vectors
## Vector addition
-$\vec{u} + \vec{v}$ can be represented by drawing each vector head to tail then joining the lines.
+$\boldsymbol{u} + \boldsymbol{v}$ can be represented by drawing each vector head to tail then joining the lines.
Addition is commutative (parallelogram)
## Scalar multiplication
-For $k \in \mathbb{R}^+$, $k\vec{u}$ has the same direction as $\vec{u}$ but length is multiplied by a factor of $k$.
+For $k \in \mathbb{R}^+$, $k\boldsymbol{u}$ has the same direction as $\boldsymbol{u}$ but length is multiplied by a factor of $k$.
When multiplied by $k < 0$, direction is reversed and length is multplied by $k$.
## Vector subtraction
-To find $\vec{u} - \vec{v}$, add $\vec{-v}$ to $\vec{u}$
+To find $\boldsymbol{u} - \boldsymbol{v}$, add $\boldsymbol{-v}$ to $\boldsymbol{u}$
## Parallel vectors
Parallel vectors have same direction or opposite direction.
-**Two non-zero vectors $\vec{u}$ and $\vec{v}$ are parallel if there is some $k \in \mathbb{R} \setminus \{0\}$ such at $\vec{u} = k \vec{v}$**
+**Two non-zero vectors $\boldsymbol{u}$ and $\boldsymbol{v}$ are parallel if there is some $k \in \mathbb{R} \setminus \{0\}$ such at $\boldsymbol{u} = k \boldsymbol{v}$**
## Position vectors
Vectors may describe a position relative to $O$.
-For a point $A$, the position vector is $\vec{OA}$
+For a point $A$, the position vector is $\overrightharp{OA}$
+
+\vfill\eject
## Linear combinations of non-parallel vectors
-If two non-zero vectors $\vec{a}$ and $\vec{b}$ are not parallel, then:
+If two non-zero vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are not parallel, then:
-$$m\vec{a} + n\vec{b} = p \vec{a} + q \vec{b}\quad\text{implies}\quad m = p, \> n = q$$
+$$m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad \therefore \quad m = p, \> n = q$$
+
+![](graphics/parallelogram-vectors.jpg){#id .class width=20%}
+![](graphics/vector-subtraction.jpg){#id .class width=10%}
## Column vector notation
## Component notation
-A vector $\vec{u} = \begin{bmatrix}x\\ y \end{bmatrix}$ can be written as $\vec{u} = x\vec{i} + y\vec{j}$.
-$\vec{u}$ is the sum of two components $x\vec{i}$ and $y\vec{j}$
-Magnitude of vector $\vec{u} = x\vec{i} + y\vec{j}$ is denoted by $|u|=\sqrt{x^2+y^2}$
+A vector $\boldsymbol{u} = \begin{bmatrix}x\\ y \end{bmatrix}$ can be written as $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$.
+$\boldsymbol{u}$ is the sum of two components $x\boldsymbol{i}$ and $y\boldsymbol{j}$
+Magnitude of vector $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$ is denoted by $|u|=\sqrt{x^2+y^2}$
Basic algebra applies:
-$(x\vec{i} + y\vec{j}) + (m\vec{i} + n\vec{j}) = (x + m)\vec{i} + (y+n)\vec{j}$
+$(x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}$
Two vectors equal if and only if their components are equal.
## Unit vectors
-A vector of length 1. $\vec{i}$ and $\vec{j}$ are unit vectors.
+A vector of length 1. $\boldsymbol{i}$ and $\boldsymbol{j}$ are unit vectors.
+
+A unit vector in direction of $\boldsymbol{a}$ is denoted by $\hat{\boldsymbol{a}}$:
-A unit vector in direction of $\vec{a}$ is denoted by $\hat{\vec{a}}$
+$$\hat{\boldsymbol{a}}={1 \over {|\boldsymbol{a}|}}\boldsymbol{a}\quad (\implies |\hat{\boldsymbol{a}}|=1)$$
-Also, unit vector of $\vec{a}$ can be defined by $\vec{a} \cdot {|\vec{a}|}$
+Also, unit vector of $\boldsymbol{a}$ can be defined by $\boldsymbol{a} \cdot {|\boldsymbol{a}|}$
## Scalar products / dot products
-If $\vec{a} = a_i \vec{i} + a_2 \vec{j}$ and $\vec{b} = b_i \vec{i} + b_2 \vec{j}$, the dot product is:
-$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2$$
+If $\boldsymbol{a} = a_i \boldsymbol{i} + a_2 \boldsymbol{j}$ and $\boldsymbol{b} = b_i \boldsymbol{i} + b_2 \boldsymbol{j}$, the dot product is:
+$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2$$
Produces a real number, not a vector.
-$$\vec{a} \cdot \vec{a} = |\vec{a}|^2$$
+$$\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$$
+
+**on CAS:** `dotP([a b c], [d e f])`
+
+## Scalar product properties
+
+1. $k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k{b})$
+2. $\boldsymbol{a \cdot 0}=0$
+3. $\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}$
+4. $\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1$
+5. If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular
+6. $\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2$
+
+For parallel vectors $\boldsymbol{a}$ and $\boldsymbol{b}$:
+$$\boldsymbol{a \cdot b}=\begin{cases}
+|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
+-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
+\end{cases}$$
## Geometric scalar products
-$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$
+$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$$
where $0 \le \theta \le \pi$
## Perpendicular vectors
-If $\vec{a} \cdot \vec{b} = 0$, then $\vec{a} \perp \vec{b}$ (since $\cos 90 = 0$)
+If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, then $\boldsymbol{a} \perp \boldsymbol{b}$ (since $\cos 90 = 0$)
## Finding angle between vectors
-$$\cos \theta = {{\vec{a} \cdot \vec{b}} \over {|\vec{a}| |\vec{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\vec{a}| |\vec{b}|}}$$
+**positive direction**
+
+$$\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}$$
+
+**on CAS:** `angle([a b c], [a b c])` (Action -> Vector -> Angle)
## Vector projections
+Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitude of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$.
+
+$$\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$$
+
+Scalar resolute of $\vec{a}$ on $\vec{b} = |\vec{u}| = \vec{a} \cdot \hat{\vec{b}}$
+
+## Vector proofs
+
+**Concurrent lines -** $\ge$ 3 lines intersect at a single point
+**Collinear points -** $\ge$ 3 points lie on the same line ($\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB}$ where $\lambda + \mu = 1$. If $C$ is between $\vec{AB}$, then $0 \lt \mu \lt 1$)
+
+Useful vector properties:
+
+- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel, then $\boldsymbol{b}=k\boldsymbol{a}$ for some $k \in \mathbb{R} \setminus \{0\}$
+- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel with at least one point in common, then they lie on the same straight line
+- Two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b}=0$
+- $\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$
+
+## Linear dependence
+
+Vectors $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent if they are non-parallel and:
+
+$$k\vec{a}+l\vec{b}+m\vec{c} = 0$$
+$$\therefore \vec{c} = m\vec{a} + n\vec{b} \quad \text{(simultaneous)}$$
+
+$\vec{a}, \vec{b},$ and $\vec{c}$ are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel.
+
+Vector $\vec{w}$ is a linear combination of vectors $\vec{v_1}, \vec{v_2}, \vec{v_3}$
+
+## Three-dimensional vectors
+
+Right-hand rule for axes - $z$ is up or out of page.
+
+## Angle between vector and axis
+
+Direction of a vector can be given by the angles it makes with $\vec{i}, \vec{j}, \vec{k}$ directions.
+
+For $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ which makes angles $\alpha, \beta, \gamma$ with positive direction of $x, y, z$ axes:
+$$\cos \alpha = {a_1 \over |\vec{a}|}, \quad \cos \beta = {a_2 \over |\vec{a}|}, \quad \cos \gamma = {a_3 \over |\vec{a}|}$$
+
+**on CAS:** `angle([a b c], [1 0 0])` for angle between $a\vec{i} + b\vec{j} + c\vec{k}$ and $x$-axis
+
+## Collinearity
+
+Points $A, B, C$ are collinear iff $\vec{AC}=m\vec{AB} \text{ where } m \ne 0$