update practice exams
[notes.git] / spec / vectors.md
index f832af7f4eb6f0f3009dc2487daaf2e0e6ff190d..ef987fad121a2e3ecbe4a2770d19fdcab8bf6f49 100644 (file)
@@ -1,9 +1,15 @@
 ---
+geometry: margin=2cm
+<!-- columns: 2 -->
+graphics: yes
+tables: yes
+author: Andrew Lorimer
+classoption: twocolumn
 header-includes:
-  - \documentclass{standalone}
-  - \usepackage{cleveref}
-  - \usepackage{harpoon}
-  - \usepackage{accent} \newcommand{\vect}[1]{\accentset{\rightharpoonup}{#1}}
+- \usepackage{harpoon}
+- \usepackage{amsmath}
+- \pagenumbering{gobble}
+
 ---
 
 # Vectors
@@ -18,40 +24,45 @@ header-includes:
 - vectors with equal magnitude and direction are equivalent
 
 
-![](graphics/vectors-intro.png)
+![](graphics/vectors-intro.png){#id .class width=20%} 
 
 ## Vector addition
 
-$\vec{u} + \vec{v}$ can be represented by drawing each vector head to tail then joining the lines.  
+$\boldsymbol{u} + \boldsymbol{v}$ can be represented by drawing each vector head to tail then joining the lines.  
 Addition is commutative (parallelogram)
 
 ## Scalar multiplication
 
-For $k \in \mathbb{R}^+$, $k\vec{u}$ has the same direction as $\vec{u}$ but length is multiplied by a factor of $k$.
+For $k \in \mathbb{R}^+$, $k\boldsymbol{u}$ has the same direction as $\boldsymbol{u}$ but length is multiplied by a factor of $k$.
 
 When multiplied by $k < 0$, direction is reversed and length is multplied by $k$.
 
 ## Vector subtraction
 
-To find $\vec{u} - \vec{v}$, add $\vec{-v}$ to $\vec{u}$
+To find $\boldsymbol{u} - \boldsymbol{v}$, add $\boldsymbol{-v}$ to $\boldsymbol{u}$
 
 ## Parallel vectors
 
-Parallel vectors have same direction or opposite direction.
+Same or opposite direction
 
-**Two non-zero vectors $\vec{u}$ and $\vec{v}$ are parallel if there is some $k \in \mathbb{R} \setminus \{0\}$ such at $\vec{u} = k \vec{v}$**
+$$\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}$$ 
 
 ## Position vectors
 
 Vectors may describe a position relative to $O$.
 
-For a point $A$, the position vector is $\vec{OA}$
+For a point $A$, the position vector is $\overrightharp{OA}$
+
+\vfill\eject
 
 ## Linear combinations of non-parallel vectors
 
-If two non-zero vectors $\vec{a}$ and $\vec{b}$ are not parallel, then:
+If two non-zero vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are not parallel, then:
+
+$$m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad \therefore \quad m = p, \> n = q$$
 
-$$m\vec{a} + n\vec{b} = p \vec{a} + q \vec{b}\quad\text{implies}\quad m = p, \> n = q$$
+![](graphics/parallelogram-vectors.jpg){#id .class width=20%}
+![](graphics/vector-subtraction.jpg){#id .class width=10%}
 
 ## Column vector notation
 
@@ -59,45 +70,134 @@ A vector between points $A(x_1,y_1), \> B(x_2,y_2)$ can be represented as $\begi
 
 ## Component notation
 
-A vector $\vec{u} = \begin{bmatrix}x\\ y \end{bmatrix}$ can be written as $\vec{u} = x\vec{i} + y\vec{j}$.  
-$\vec{u}$ is the sum of two components $x\vec{i}$ and $y\vec{j}$  
-Magnitude of vector $\vec{u} = x\vec{i} + y\vec{j}$ is denoted by $|u|=\sqrt{x^2+y^2}$
+A vector $\boldsymbol{u} = \begin{bmatrix}x\\ y \end{bmatrix}$ can be written as $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$.  
+$\boldsymbol{u}$ is the sum of two components $x\boldsymbol{i}$ and $y\boldsymbol{j}$  
+Magnitude of vector $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$ is denoted by $|u|=\sqrt{x^2+y^2}$
 
 Basic algebra applies:  
-$(x\vec{i} + y\vec{j}) + (m\vec{i} + n\vec{j}) = (x + m)\vec{i} + (y+n)\vec{j}$  
+$(x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}$  
 Two vectors equal if and only if their components are equal.
 
-## Unit vectors
+## Unit vector $|\hat{\boldsymbol{a}}|=1$
 
-A vector of length 1. $\vec{i}$ and $\vec{j}$ are unit vectors.
+\begin{equation}\begin{split}\hat{\boldsymbol{a}} & = {1 \over {|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\end{equation}
 
-A unit vector in direction of $\vec{a}$ is denoted by $\hat{\vec{a}}$
+## Scalar/dot product $\boldsymbol{a} \cdot \boldsymbol{b}$
 
-Also, unit vector of $\vec{a}$ can be defined by $\vec{a} \cdot {|\vec{a}|}$
+$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2$$
 
-## Scalar products / dot products
+**on CAS:** `dotP([a b c], [d e f])`
 
-If $\vec{a} = a_i \vec{i} + a_2 \vec{j}$ and $\vec{b} = b_i \vec{i} + b_2 \vec{j}$, the dot product is:
-$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2$$
+## Scalar product properties
 
-Produces a real number, not a vector.
+1. $k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k{b})$
+2. $\boldsymbol{a \cdot 0}=0$
+3. $\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}$
+4. $\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1$
+5. If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular
+6. $\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2$
 
-$$\vec{a} \cdot \vec{a} = |\vec{a}|^2$$
+For parallel vectors $\boldsymbol{a}$ and $\boldsymbol{b}$:  
+$$\boldsymbol{a \cdot b}=\begin{cases}
+|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
+-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
+\end{cases}$$
 
 ## Geometric scalar products
 
-$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$
+$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$$
 
 where $0 \le \theta \le \pi$
 
 ## Perpendicular vectors
 
-If $\vec{a} \cdot \vec{b} = 0$, then $\vec{a} \perp \vec{b}$ (since $\cos 90 = 0$)
+If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, then $\boldsymbol{a} \perp \boldsymbol{b}$ (since $\cos 90 = 0$)
 
 ## Finding angle between vectors
 
-$$\cos \theta = {{\vec{a} \cdot \vec{b}} \over {|\vec{a}| |\vec{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\vec{a}| |\vec{b}|}}$$
+**positive direction**
+
+$$\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}$$
+
+**on CAS:** `angle([a b c], [a b c])` (Action -> Vector -> Angle)
 
+## Angle between vector and axis
+
+Direction of a vector can be given by the angles it makes with $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ directions.
+
+For $\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}$ which makes angles $\alpha, \beta, \gamma$ with positive direction of $x, y, z$ axes:
+$$\cos \alpha = {a_1 \over |\boldsymbol{a}|}, \quad \cos \beta = {a_2 \over |\boldsymbol{a}|}, \quad \cos \gamma = {a_3 \over |\boldsymbol{a}|}$$
+
+**on CAS:** `angle([a b c], [1 0 0])` for angle between $a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}$ and $x$-axis
 
 ## Vector projections
 
+Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitude of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$:
+
+$$\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$$
+
+## Scalar resolute of $\boldsymbol{a}$ on $\boldsymbol{b}$
+
+$$r_s = |\boldsymbol{u}| = \boldsymbol{a} \cdot \hat{\boldsymbol{b}}$$
+
+## Vector resolute of $\boldsymbol{a} \perp \boldsymbol{b}$
+
+$$\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u} \> \text{ where } \boldsymbol{u} \text{ is projection } \boldsymbol{a} \text{ on } \boldsymbol{b}$$
+
+## Vector proofs
+
+### Concurrent lines
+
+$\ge$ 3 lines intersect at a single point  
+
+### Collinear points
+
+$\ge$ 3 points lie on the same line  
+$\implies \vec{OC} = \lambda \vec{OA} + \mu \vec{OB}$ where $\lambda + \mu = 1$. If $C$ is between $\vec{AB}$, then $0 < \mu < 1$  
+Points $A, B, C$ are collinear iff $\vec{AC}=m\vec{AB} \text{ where } m \ne 0$
+
+### Useful vector properties
+
+- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel, then $\boldsymbol{b}=k\boldsymbol{a}$ for some $k \in \mathbb{R} \setminus \{0\}$
+- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel with at least one point in common, then they lie on the same straight line
+- Two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b}=0$
+- $\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$
+
+## Linear dependence
+
+Vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are linearly dependent if they are non-parallel and:
+
+$$k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c} = 0$$
+$$\therefore \boldsymbol{c} = m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}$$
+
+$\boldsymbol{a}, \boldsymbol{b},$ and $\boldsymbol{c}$ are linearly independent if no vector in the set is expressible as a linear combination of other vectors in set, or if they are parallel.
+
+Vector $\boldsymbol{w}$ is a linear combination of vectors $\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}$
+
+## Three-dimensional vectors
+
+Right-hand rule for axes: $z$ is up or out of page.
+
+i![](graphics/vectors-3d.png)
+
+## Parametric vectors
+
+Parametric equation of line through point $(x_0, y_0, z_0)$ and parallel to $a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}$ is:
+
+\begin{equation}\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\end{equation}
+
+## Vector functions
+
+$$\boldsymbol{r}(t)=x\boldsymbol{i}+y\boldsymbol{y}$$
+
+- If $\boldsymbol{r}(t)$ represents position with time, then the graph of endpoints of $\boldsymbol{r}(t)$ represents the Cartesian path.
+- Domain of $\boldsymbol{r}(t)$ is the range of $x(t)$
+- Range of $\boldsymbol{r}(t)$ is the range of $y(t)$
+
+## Vector calculus
+
+### Derivative
+
+Let $\boldsymbol{r}(t)=x(t)\boldsymbol{i} + y(t)\boldsymmbol(j)$. If both $x(t)$ and $y(t)$ are differentiable, then:
+
+$$\boldsymbol{r}(t)=x(t)\boldsymbol{i}+y(t)\boldsymbol{j}$$