finish polynomials for methods
authorAndrew Lorimer <andrew@lorimer.id.au>
Thu, 3 Jan 2019 02:55:32 +0000 (13:55 +1100)
committerAndrew Lorimer <andrew@lorimer.id.au>
Thu, 3 Jan 2019 02:55:32 +0000 (13:55 +1100)
methods/polynomials.md
index 6fadf113ac740d0d706f9dcd2c06e298ac431775..0542afc05a3727abcb23282aaa8584b3d3c65807 100644 (file)
@@ -4,7 +4,7 @@
 
 #### Quadratics
 **Quadratics:** $x^2 + bx + c = (x+m)(x+n)$ where $mn=c$, $m+n=b$  
 
 #### Quadratics
 **Quadratics:** $x^2 + bx + c = (x+m)(x+n)$ where $mn=c$, $m+n=b$  
-**Difference of squares:** $a^2 - b=^2 = (a - b)(a + b)$  
+**Difference of squares:** $a^2 - b^2 = (a - b)(a + b)$  
 **Perfect squares:** $a^2 \pm 2ab + b^2 = (a \pm b^2)$  
 **Completing the square (monic):** $x^2+bx+c=(x+{b\over2})^2+c-{b^2\over4}$  
 **Completing the square (non-monic):** $ax^2+bx+c=a(x-{b\over2a})^2+c-{b^2\over4a}$  
 **Perfect squares:** $a^2 \pm 2ab + b^2 = (a \pm b^2)$  
 **Completing the square (monic):** $x^2+bx+c=(x+{b\over2})^2+c-{b^2\over4}$  
 **Completing the square (non-monic):** $ax^2+bx+c=a(x-{b\over2a})^2+c-{b^2\over4a}$