minor formatting corrections in complex notes
authorAndrew Lorimer <andrew@lorimer.id.au>
Sun, 3 Mar 2019 08:17:44 +0000 (19:17 +1100)
committerAndrew Lorimer <andrew@lorimer.id.au>
Sun, 3 Mar 2019 08:17:44 +0000 (19:17 +1100)
spec/complex.md
index b70737f4fccbcf3ae252a7b687272536516f1339..ce71511c7e95db5bf532023e5385bee137260e77 100755 (executable)
@@ -96,12 +96,11 @@ $$|{z}|=\sqrt{a^2+b^2} \quad  \therefore z \overline{z} = |z|^2$$
 
 ### Dividing complex numbers
 
 
 ### Dividing complex numbers
 
-$${{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}} \quad \text{multiplicative inverse}$$
-
-(using multiplicative inverse)
+$${{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}} \quad \text{(multiplicative inverse)}$$
 
 In practice, rationalise denominator:
 
 In practice, rationalise denominator:
-${z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}$
+
+$${z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}$$
 
 ## Argand planes
 
 
 ## Argand planes