Andrew's git
/
notes.git
/ diff
summary
|
log
|
commit
| diff |
tree
commit
grep
author
committer
pickaxe
?
re
[methods] clarify cubic points of inflection
author
Andrew Lorimer
<andrew@lorimer.id.au>
Thu, 18 Apr 2019 07:00:07 +0000
(17:00 +1000)
committer
Andrew Lorimer
<andrew@lorimer.id.au>
Thu, 18 Apr 2019 07:00:07 +0000
(17:00 +1000)
methods/polynomials.md
patch
|
blob
|
history
raw
|
patch
|
inline
| side by side (from parent 1:
b0d3855
)
diff --git
a/methods/polynomials.md
b/methods/polynomials.md
index a2fe7b334ce874c55d9618fff171824c2a74f462..afd4eabe2e1baf8c2ba149569b2cfd2600251d4e 100644
(file)
--- a/
methods/polynomials.md
+++ b/
methods/polynomials.md
@@
-36,12
+36,12
@@
Distance: $\vec{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
## Cubic graphs
## Cubic graphs
-$$y=a(
x-b
)^3 + c$$
+$$y=a(
bx-h
)^3 + c$$
-- $m=0$ at *stationary point of inflection*
+- $m=0$ at *stationary point of inflection*
(i.e. ({h \over b}, k)$)
- in form $y=(x-a)^2(x-b)$, local max at $x=a$, local min at $x=b$
- in form $y=a(x-b)(x-c)(x-d)$: $x$-intercepts at $b, c, d$
- in form $y=(x-a)^2(x-b)$, local max at $x=a$, local min at $x=b$
- in form $y=a(x-b)(x-c)(x-d)$: $x$-intercepts at $b, c, d$
-
+- in form $y=a(x-b)^2(x-c)$, touches $x$-axis at $b$, intercept at $c$
## Quartic graphs
## Quartic graphs
@@
-91,4
+91,4
@@
a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}$
- Generate two new equations with only two variables
- Rearrange & solve
- Substitute one variable into another equation to find another variable
- Generate two new equations with only two variables
- Rearrange & solve
- Substitute one variable into another equation to find another variable
-- etc.
\ No newline at end of file
+- etc.