+Function is even if it can be reflected across $y$-axis $\implies f(x)=f(-x)$
+Function $x^{\pm {p \over q}}$ is odd if $q$ is odd
+
+### $x^n$ where $n \in \mathbb{Z}^+$
+
+| $n$ is even: | $n$ is odd: |
+| ------------ | ----------- |
+|![](graphics/parabola.png){#id .class width=50%} | ![](graphics/cubic.png){#id .class width=50%} |
+
+### $x^n$ where $n \in \mathbb{Z}^-$
+
+| $n$ is even: | $n$ is odd: |
+| ------------ | ----------- |
+|![](graphics/truncus.png){#id .class width=50%} | ![](graphics/hyperbola.png){#id .class width=50%} |
+
+### $x^{1 \over n}$ where $n \in \mathbb{Z}^+$
+
+| $n$ is even: | $n$ is odd: |
+| ------------ | ----------- |
+|![](graphics/square-root-graph.png){#id .class width=50%} | ![](graphics/cube-root-graph.png){#id .class width=50%} |