From: Andrew Lorimer Date: Thu, 7 Mar 2019 22:43:34 +0000 (+1100) Subject: literal equations / exponential modelling X-Git-Tag: yr12~215 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/125c90e3fd6580aad06d73d992439981391b6a1b?ds=sidebyside literal equations / exponential modelling --- diff --git a/methods/stuff.md b/methods/stuff.md index adbb286..661a69f 100644 --- a/methods/stuff.md +++ b/methods/stuff.md @@ -57,3 +57,18 @@ Inverse of $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a^x$ is $f^{-1}: \mathbb{ ## Euler's number $$e= \lim_{n \rightarrow \infty} (1 + {1 \over n})^n$$ + +## Literal equations + +_Literal equation_ - no numerical solutions + +## Exponential and logarithmic modelling + +$$A = A_0 e^{kt}$$ + +where +$A_0$ is initial value +$t$ is time taken +$k$ is a constant +For continuous growth, $k > 0$ +For continuous decay, $k < 0$