From: Andrew Lorimer Date: Tue, 19 Feb 2019 11:09:15 +0000 (+1100) Subject: tidy up Z notes X-Git-Tag: yr12~248 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/13b84dccdead2321faab02c022f7cba6fa44be10 tidy up Z notes --- diff --git a/spec/complex.md b/spec/complex.md index e7760be..54c8082 100755 --- a/spec/complex.md +++ b/spec/complex.md @@ -45,7 +45,7 @@ Therefore.. - $i^{4n+2} = -1$ - $i^{4n+3} = -i$ -Divide by 4 and take remainder. +For $i^n$, divide $n$ by 4 and let remainder $= r$. Then $i^n = i^r$. ### Multiplying complex expressions @@ -68,7 +68,6 @@ Also, $z \overline{z} = (a+bi)(a-bi) = a^2+b^2 = |z|^2$ - $z \overline{z} = |z|^2$ - $z + \overline{z} = 2 \operatorname{Re}(z)$ - ### Modulus Distance from origin. @@ -109,17 +108,11 @@ $z^2+a^2=z^2-(ai)^2=(z+ai)(z-ai)$ ## Polar form -General form: -$z=r \operatorname{cis} \theta$ -$= r(\operatorname{cos}\theta+i \operatorname{sin}\theta)$ - -$z=a+bi$ -$z=r\operatorname{cis}\theta$ +$$\begin{equation}\begin{split}z & =r \operatorname{cis} \theta \\ & = r(\operatorname{cos}\theta+i \operatorname{sin}\theta) \\ & = a + bi \end{split}\end{equation}$$ - -- $z=a+bi$ -- $r$ is the distance from origin, given by Pythagoras ($r=\sqrt{x^2+y^2}$) -- $\theta$ is the argument of $z$, CCW from origin +- $r=|z|$, given by Pythagoras ($r=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}$) +- $\theta=\operatorname{Arg}(z)$ (on CAS: `arg(a+bi)`) +- **principal argument** is $\operatorname{Arg}(z) \in (-\pi, \pi]$ Note each complex number has multiple polar representations: $z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) where $n$ is integer number of revolutions @@ -128,6 +121,8 @@ $z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) where $n$ $$(r \operatorname{cis} \theta)^{-1} = r\operatorname{cis} (- \theta)$$ +Reflection of $z$ across horizontal axis. + ### Multiplication and division in polar form $z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)$ (multiply moduli, add angles)