From: Andrew Lorimer Date: Thu, 22 Aug 2019 12:01:52 +0000 (+1000) Subject: [spec] normal distributions X-Git-Tag: yr12~59 X-Git-Url: https://git.lorimer.id.au/notes.git/diff_plain/33c9f9dae4ce9b4b7f23aad987826856ef44bda8?ds=sidebyside [spec] normal distributions --- diff --git a/spec/statistics.pdf b/spec/statistics.pdf index adbdbf0..357175e 100644 Binary files a/spec/statistics.pdf and b/spec/statistics.pdf differ diff --git a/spec/statistics.tex b/spec/statistics.tex index f546e20..7c89068 100644 --- a/spec/statistics.tex +++ b/spec/statistics.tex @@ -12,6 +12,7 @@ \usepackage{xcolor} % used only to show the phantomed stuff \definecolor{cas}{HTML}{e6f0fe} \usepackage{mathtools} +\pgfplotsset{compat=1.16} \pagestyle{fancy} \fancyhead[LO,LE]{Unit 4 Specialist --- Statistics} @@ -61,9 +62,11 @@ \section{Sample mean} + Approximation of the \textbf{population mean} determined experimentally. + \[ \overline{x} = \dfrac{\Sigma x}{n} \] - where \(n\) is the size of the sample (number of sample points) + where \(n\) is the size of the sample (number of sample points) and \(x\) is the value of a sample point \subsubsection*{\colorbox{cas}{On CAS:}} @@ -79,8 +82,41 @@ \[ \overline{X} = \sum_{i=1}^n \frac{x_i}{n} = \dfrac{\sum x}{n} \] - Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) - + Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) (approaches these values for increasing sample size \(n\)). + \colorbox{cas}{On CAS:} Spreadsheet \(\rightarrow\) Catalog \(\rightarrow\) \verb;randNorm(sd, mean, n); where \verb;n; is the number of samples. Show histogram with Histogram key in top left \\ + To calculate parameters of a dataset: Calc \(\rightarrow\) One-variable + + \section{Normal distributions} + + mean = mode = median + + \[ Z = \frac{X - \mu}{\sigma} \] + + Normal distributions must have are (total prob.) of 1 \(\implies \int^\infty_{-\infty} f(x) \> dx = 1\) +\pgfmathdeclarefunction{gauss}{2}{% + \pgfmathparse{1/(#2*sqrt(2*pi))*exp(-((x-#1)^2)/(2*#2^2))}% +} + +\begin{tikzpicture} +\begin{axis}[every axis plot post/.append style={ + mark=none,domain=-3:3,samples=50,smooth}, % All plots: from -2:2, 50 samples, smooth, no marks + axis x line*=bottom, % no box around the plot, only x and y axis + axis y line*=left, % the * suppresses the arrow tips + enlargelimits=upper, + ytick={0.5}, + yticklabels={\(\frac{1}{\sigma \sqrt{2\pi}}\)}, + xtick={-2,-1,0,1,2}, + xticklabels={\(\mu-2\sigma\), \(\mu-\sigma\), \(\mu\), \(\mu+\sigma\), \(\mu+2\sigma\)}, + xlabel={\(x\)}, + every axis x label/.style={at={(current axis.right of origin)},anchor=north west}, + ylabel={\(\Pr(X=x)\)}] + \addplot {gauss(0,0.75)}; +\end{axis} +\end{tikzpicture} + + \section{Central limit theorem} + + If \(X\) is randomly distributed with mean \(\mu\) and sd \(\sigma\), then with an adequate sample size \(n\) the distribution of the sample mean \(\overline{X}\) is approximately normal with mean \(E(\overline{X})\) and \(\operatorname{sd}(\overline{X}) = \frac{\sigma}{\sqrt{n}}\). \end{document}